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ABSTRACT 
 

SEASONAL AND SPATIAL VARIATIONS IN CHEMICAL COMPOSITION AND FLUXES 
OF DISSOLVED ORGANIC MATTER AND NUTRIENTS IN THE 

LOWER MILWAUKEE RIVER 
 

by 
 
 
 

Tarek A Teber 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Laodong Guo 

 
 
 

            Physical, chemical and biological processes directly influence the transport, composition, 

and fluxes of dissolved organic matter (DOM) in river watersheds. Changes in the abundance 

and composition of DOM and nutrients (P&N) in the watershed should reflect changes in 

hydrological cycle, effluent discharge, land-use and land-cover, and anthropogenic activities in 

the river basin, especially in rivers that run through metropolitan areas such as the Milwaukee 

River. Despite the importance of DOM to ecosystem health and function, a literature search to 

date finds no comprehensive accounting of DOM in the Milwaukee River. To examine DOM 

dynamics, monthly water samples were collected between February 2014 and April 2015 for the 

measurements of hydrographic parameters, bulk dissolved organic carbon (DOC), 

chromophoric-DOM and fluorescent-DOM to determine temporal variations in source and 

composition of DOM in the lower Milwaukee River and fluxes of DOM to Lake Michigan, as 

well as influence of human activities in the river basin. 

           Concentrations of DOC varied from 336 µM-C during the winter under ice cover to 1,146 

µM-C during the snowmelt in early spring, with an average of 726±224 µM-C. DOC abundance 

in the Milwaukee River was found to be relatively high in comparison to other world rivers. 
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Absorption coefficients at 254 nm (a254) averaged 71±31 m-1, and show a significant correlation 

with DOC (R2=0.8370). Non-chromophoric DOC represented approximately 33% of the bulk 

DOC in the river, and majority of DOC (67%) was optically active. Specific ultra violet 

absorbance at 254 nm (SUVA254) and spectral slope (S275-295) were inversely correlated with an 

average of 3.6±0.7 L mg-C-1 m-1 and 0.0170±0.0034 nm-1 respectively. SUVA254 and S275-295 

were mostly controlled by hydrological, biological and degradation processes. Applications of 

parallel factor (PARAFAC) modeling on EEMs data identified three major fluorescent DOM 

components (C1, C2 and C3) in the river waters, including two terrestrial humic-like components 

(C1 and C2) and one protein-like component (C3).  

         In addition to DOM, variations in abundance, chemical speciation, and export fluxes of 

nutrients (P&N) from the lower Milwaukee River, as well as the influence of hydrology and 

anthropogenic activities, also have been studied. Nutrient species including nitrate (NO3
-), 

dissolved organic nitrogen (DON), dissolved inorganic phosphorus (DIP) or phosphate, 

dissolved organic phosphorus (DOP), particulate inorganic phosphorus (PIP) and particulate 

organic phosphorus (POP) were measured.  Overall, NO3
- was the predominant dissolved N 

species and DON contributed up to ~30% of the total dissolved N transported in the river. 

Concentrations of NO3
- ranged from 62 µM-N during the warmer season in spring and summer 

to 259 µM-N in the colder months in winter with an average of 125±60 µM-N, suggesting that 

NO3
- was predominately controlled by biological uptake and hydrology. Average NO3

- 

concentration during 2014-2015 was among the highest in comparison with major world rivers, 

reflecting the anthropogenic impact on nutrient abundances in the Milwaukee River potentially 

through agricultural activities. Similar to DOC seasonal variations, DON varied from 2 µM-N 

under ice in winter to 254 µM-N during the spring snowmelt with an average of 54±50 µM-N. 
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Within the total dissolved phosphorus (TDP) pool, almost 50% were organic phosphorus (DOP) 

and the other 50% were inorganic (DIP), indicating a potential role for DOP in nutrient cycling. 

Phosphorus exported from the Milwaukee River to Lake Michigan coastal zone was 

predominately in the dissolved form (DIP+DOP represented 62% of total P). DIP exhibited large 

seasonal variability ranging from 0.114 µM-P in January 2015 under the ice to as high as 2.75 

µM-P during April 2015 storm event, with an average of 0.970  ± 0.791 µM-P. DOP varied from 

0.080 µM-P when discharge was high to 4.687 µM-P during the summer when discharge is low 

and primary productivity is intense, with an average of 1.120±0.990 µM-P. PIP and POP 

abundances were mainly controlled by hydrology. They were low under ice and very high during 

the April 2015 storm event and uniquely much lower than those of other world rivers. PIP varied 

from 0.045 to 2.229 µM-P with an average of 0.473±0.483 µM-P and POP varied from 0.224 to 

3.791 µM-P with an average of 0.809±0.648 µM-P. The average N/P ratios in inorganic and 

organic nutrient pools are 151±84 and 80±67 respectively, indicating a N- enriched but P-

depleted ecosystem in the lower Milwaukee River. Using the interpolation method of regression, 

the annual export fluxes of DIP, DOP, PIP, POP, NO3
-, DON and DOC were 63, 14, 47, 64, 

1325, 200 and 6710 (103 kg-P, N or C) respectively and the yields were 28, 6, 21, 28, 581, 88 and 

2943 (kg-P, N or C) km-2 respectively.  
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1. Introduction  

1.1 Dissolved organic matter  

            Dissolved organic matter (DOM) is a complex mixture of organic materials with different 

sources and composition (Huguet et al. 2010). DOM transport in river systems is associated with 

the mobility and environmental fate of nutrients (C, N and P) and trace metals and plays a key 

role in the transformation and reactivity of persistent organic pollutants (POP’s) such as 

polyaromatic hydrocarbons (PAH’s) and polychlorinated biphenyls (PCB’s), and emerging 

organic pollutants (EOP’s) such as pharmaceutical and personal care products (PPCP’s). 

Changes in DOM abundance and composition in the watershed should reflect changes in 

hydrological cycle, effluent discharge, land-use and land-cover, and anthropogenic activities in 

the river basin, especially in rivers that run through metropolitan areas such as the Milwaukee 

River. Chromophoric dissolved organic matter (CDOM) is the fraction of DOM that absorbs 

UV-visible light and/or fluoresces. Advances in spectroscopic techniques and statistical 

modeling, parallel factor analysis (PARAFAC), allow the use of CDOM as a proxy for DOM 

characterization.  

            The lower Milwaukee River has been an area of concern due to anthropogenic influence 

for decades. However, the quantity and quality of DOM exported from the Milwaukee River to 

Lake Michigan coastal area remain poorly understood but is an important aspect in determining 

ecosystem health. Fluorescence and UV-Vis spectroscopy have been widely used to study the 

DOM dynamics in aquatic systems. However, application of these techniques to the Milwaukee 

River system are scarce. In addition, there are very few studies that report the abundance of 

dissolved organic carbon (DOC) in the Milwaukee River basin. These studies lack in-depth focus 

and time-series dataset on DOM  (e.g. Shafer et al 1997, Hurley et al. 1996 and Steuer et al. 
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1999). A thorough understanding of the sources and effects of seasonal dynamics on the 

abundance, composition and fluxes of DOM in the Milwaukee River can potentially support 

policies aimed at bringing about critical change in the health of freshwater systems.  

          The purpose of this first chapter is to establish a thorough comprehension of the seasonal 

and spatial variations in the abundance, composition and fluxes of DOM and their controlling 

factors in the lower Milwaukee River. 

1.2 Nutrients: phosphorus and nitrogen 

             Nitrogen (N) and phosphorus (P) are essential nutrients to freshwater organisms. They 

play a critical role in regulating primary production, water quality and ecosystem health (Guo et 

al. 2004; DeAngelis 2012). Phosphorus, in most cases, is the limiting nutrient in aquatic 

environments (Finlay et al. 2013 and Lin & Guo 2016). However accelerated input of 

bioavailable phosphorus and nitrogen through anthropogenic activities may lead to degradation 

of water quality and catastrophic environmental issues (Rabalais et al. 2002, Hagy et al. 2004, 

Yates and Johnes 2013). Nutrients’ various forms and phases have different biogeochemical 

reactivity and fates in aquatic environments. Change in the stoichiometry of the bioavailable 

forms of nutrients may occur while the total nutrient loads remain constant (Lin et al. 2015).   
             Recently local government agencies and the scientific community expressed concerns 

about excessive Cladophora growth in the near-shore area of Lake Michigan, which can harbor 

pathogens and result in costly beach closures (Bootsma et al. 2008). In many previous studies 

and government monitoring programs, only total P and N are measured without an in depth focus 

on nutrient species and their fluxes in natural waters (e.g. Finlay et al. 2013). The 

biogeochemical dynamics of nutrients in the Milwaukee River including abundance, chemical 

and phase speciation, and fluxes remain unclear to date.   
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          The purpose of this second chapter is to examine in depth the seasonal variations in the 

abundance, chemical speciation and fluxes of nutrients (P & N) in the lower Milwaukee River.  

2. Chapter I: Seasonal and spatial variations in the abundance, composition and fluxes of 

dissolved organic matter in the lower Milwaukee River system 

2.1 Background 

            Dissolved organic matter (DOM) is the product of degradation of plants, animals and 

microorganisms (Huguet et al. 2010). It is a heterogeneous and poorly understood mixture of 

organic materials that often originate from allochthonous (e.g. soil leaching, surface runoff) and 

autochthonous (e.g. in situ primary production) sources in water systems (Laird & Scavia 1990). 

Almost 70% of surface water DOM has not been characterized by molecular structure, mainly 

due to its chemical complexity and low abundance in each organic compound class (Guo and 

Santschi 2007; Andrade et al. 2013). Different classes of organic compounds (aliphatic and 

aromatic) within the DOM pool will have various ecological roles and fates in aquatic systems 

(Maie et al. 2014). A fraction of the bulk DOM pool is highly reactive and affects aquatic 

ecosystems by controlling microbial food webs and biogeochemical cycling, such as binding 

with hydrous metal oxides and serving as electron shuttles under anoxic conditions (Jaffé et al. 

2012). DOM controls the mobility and bioavailability of associated carbon, nitrogen, 

phosphorous and trace metals (e.g., Guo et al., 2001 and Hestir et al. 2015). It is a critical player 

in the carbon cycle through carbon transport from terrestrial to aquatic systems (Battin et al. 

2008). Biological (heterotrophic oxidation) and photochemical degradation of DOM is linked to 

the production of CO2 (g) in aquatic systems, which contributes to atmospheric CO2 (g) thus 

altering the global carbon budget and ultimately the climate (Mayorga et al. 2005). 

Accumulation or an excess of DOM in the water column is one of the major causes of water 



www.manaraa.com

	
  
4 

quality and ecosystem health degradation, since a significant fraction of DOM (12–56%) could 

be bioavailable and it is estimated that DOM contains 1-3% nitrogen and 0.2% phosphorus (Guo 

et al. 1999, Kawahigashi et al. 2004 and Dillon & Molot 1997).  DOM also plays an important 

role in the fate and transport of persistent (POP’s) such as polychlorinated biphenyls (PCB’s) and 

polyaromatic hydrocarbons (PAH’s), and emerging organic pollutants (EOP’s) such as 

pharmaceuticals and personal care products (PPCP’s) (Veith et al. 1971 and Furguson et al. 

2013). 

            Chromophoric dissolved organic matter (CDOM) is a fraction of the DOM pool that 

absorbs UV-visible light and/or fluoresces and in aquatic systems, CDOM protects benthic 

microorganisms against UV radiation and is capable of affecting primary production by 

absorbing UV-visible energy needed for photosynthesis (Laurion et al. 2000 and Williamson et 

al. 1996). Fluorescent DOM (FDOM) is the sub-fraction of CDOM with fluorescent properties. 

Advances in spectroscopic techniques and parallel factor modeling (PARAFAC) allow the use of 

CDOM/FDOM as a proxy for the bulk DOM pool to determine its major components, 

abundance, composition and sources (e.g., Stedmon & Bro 2008 and Zhou et al. 2013). 

            Changes in hydrology, effluent discharge, land-use and land-cover, and anthropogenic 

activities in the river basin should reflect changes in DOM abundance and composition and 

fluxes, especially in rivers that run through metropolitan areas such as the Milwaukee River. 

Changes of DOM quantity and quality may have relevant effects on the biogeochemical cycling, 

ecosystems health and water quality in the Milwaukee River, near shore Lake Michigan and 

beyond (Hiriart-Baer et al. 2008). Past studies involving DOM in the Milwaukee River 

watershed focused on the interaction of dissolved organic carbon (DOC) with trace metals (e.g. 

Shafer et al. 1997 and Hurley et al. 1996) and phase partitioning of POP’s within the DOC, 
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colloidal organic carbon (COC) and particulate organic carbon (POC) pools (e.g. Steuer et al. 

1999) without an in depth focus on DOM characterization and transport. Therefore, knowledge 

of the abundance, composition and fluxes of DOM in the Milwaukee River is important for 

better understanding the fate and transport of emerging contaminants, toxic metals and POP’s in 

this river basin. 

           To date, a literature search finds no comprehensive study of bulk DOC or CDOM in the 

Milwaukee River system. The goal of this study is to establish a baseline dataset and a thorough 

comprehension of the sources and effects of seasonal and spatial dynamics on the abundance, 

composition and fluxes of DOM in the Milwaukee River, which can potentially support policy 

aimed at bringing about critical change to the health of regional and global freshwater systems. 

2.2 Hypotheses and objectives 

           The hypotheses of this study were 1) variations in DOC abundance and composition 

should be predominately correlated to variations in the hydrological cycle in the Milwaukee 

River watershed, 2) DOM in the Milwaukee River should be mostly chromophoric and 

terrigenous in nature, and 3) DOC fluxes during the spring season (ice melt, high rainfall and 

storm events) should represent a large percentage of the total DOC annual flux to Lake 

Michigan. 

           The objectives of this study include 1) to determine DOC abundance, water isotopes and 

hydrographic parameters at different seasons and during storm events, 2) to elucidate seasonal 

and spatial variations in CDOM using both fluorescence and UV-Vis spectroscopy, 3) to 

examine the interrelationship among DOC, CDOM, discharge, water isotopes and other 

environmental parameters, and 4) to quantitatively estimate the seasonal and annual export 

fluxes of dissolved organic carbon and DOM components. 
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2.3 Methods 

2.3.1 Study area and sampling site (chapter I and II) 

 

Figure 1. A map of the study area and sampling sites in the lower Milwaukee River during 2014-

2015. 

           The Milwaukee River watershed covers an area of approximately 1813 square Kilometers. 

The main stem of the Milwaukee River originates in southeastern Fond du Lac County and flows 

approximately 163 kilometers before it discharges in Lake Michigan in the City of Milwaukee, 

Milwaukee County, Wisconsin (Figure 1). Most of the river basin is rural and dominated by 

agricultural land uses. Even though the Milwaukee metropolitan area is highly populated, only 

18% of the river basin is developed. Seven percent of the basin is made up of surface water and 

wetlands and approximately 55% is farmland (see also www.SEWRPC.org).  

             Sampling sites along the lower Milwaukee River are shown in Figure 1. Monthly water 
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samples were collected at both MR-01, a downstream station near the delta junction in the 

Milwaukee River estuary, and MR-05, an upper stream station representing only natural surface 

runoff, between February 2014 and April 2015 (Figure 1). Transectional sampling along the river 

was performed on April 10, 2015 (high discharge season) and November 13, 2014 (low flow 

season) and involved the monthly sampling sites (MR-01 and MR-05), MR-02, MR-03 and MR-

04. End-members sampling sites included LC-01, LC-02, MMR-01, KKR-01 (April 10, 2015) 

and MMR-01, KKR-01 (November 13, 2014) (Figure 1). 

2.3.2 Sample collection 

           Samples were collected and transferred to acid cleaned HDPE (high density polyethylene) 

bottles and kept on ice at 4 C° in the dark while in transport to the laboratory. At the lab, samples 

were filtered using a pre-combusted (550 C° for 5 hours) 0.7 µm GF/F filter (Whatman) for 

DOM analysis and 0.4 µm polycarbonate filters (Whatman) for nutrients analysis using an acid 

cleaned vacuum filtration apparatus. Samples and filters were refrigerated until analysis. For 

DOC measurements, samples were kept in pre-combusted glass vials and acidified with 

concentrated HCl to a pH < 2. At this pH, all inorganic carbon species were converted to CO2 (g) 

and escape from the sample during sparging before DOC analysis (next section). DOM photo-

degradation and biodegradation are key issues to this analysis, so samples were processed 

expediently (Dixon et al. 2014).  Water samples were filtered immediately right after sample 

collection and DOC measurements were performed within one week (Zhou et al. 2013 and 

DeVilbiss et al. 2016). 

2.3.3 Measurements of dissolved organic carbon (DOC)  
 
             To compare the dynamics of DOC and CDOM, DOC concentrations were determined 

using a Shimadzu TOC-L VCPN analyzer. Two drops of concentrated HCL were added to the 
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samples to bring pH <2 to convert all the dissolved inorganic carbon (DIC) to CO2 (g). Samples 

were purged with CO2-free air for 5 minutes to make sure that all CO2 (g) is removed prior 

analysis. Three to five replicate measurements were made with a coefficient of variance of <2%. 

Internal standards from certified DOC sample (Hansell Laboratory, University of Miami) were 

measured every eight samples for QA and QC (Zhou and Guo 2012). 

2.3.4 Measurements of UV-visible absorption 

              Absorption spectra of CDOM were measured using a UV-VIS spectrophotometer 

(Agilent 8453). Similar to the fluorescence measurements, samples were diluted with E-pure 

water to an absorbance (A) of < 0.02 at 260 nm to minimize inner-filtering effects. A one cm 

quartz cuvette was used to scan water samples with increments of 1 nm over a wavelength range 

from 200 to 800 nm. Water blanks were measured and the refractive index was corrected for by 

subtracting the averaged absorbance of the blank between 650 and 800 nm (Zhou et al. 2015). 

Absorption spectroscopic parameters including absorption coefficient at 254 nm (a254), specific 

UV absorbance at 254 nm (SUVA254), and spectral slope between 275-295 nm (S275-295) were 

further calculated. Specifically, absorption coefficient at 254 nm is calculated as a254 = 

(A254*2.303)/L, where A is absorbance and L is path length of cuvette used, and represents 

CDOM abundance. On the other hand, SUVA254 was calculated as A254/2.303/[DOC] and is 

quantitative linked to DOM aromaticity. S275-295 is the slope of the linear regression between 

275-295 nm and can be used as a proxy for average DOM molecular weight (Helms et al. 2008, 

Zhou and Guo 2012).  

 2.3.5 Measurements of fluorescence EEMs and PARAFAC Modeling 

            A Horiba Fluoromax-4 spectrophotometer was used to scan the samples with an 

increment of 2 nm between 220 nm and 480 nm for excitation wavelengths and with 5 nm 
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intervals between 240 nm and 600 nm for emission wavelengths. A blank was scanned each day 

of the analysis to remove Raman scattering peaks from 3-D excitation-emission matrix (EEM) 

spectrums. Samples were diluted with E-pure water to an absorbance of < 0.02 at 260 nm to 

minimize inner-filtering effects (Zhou et al. 2013). 3D-EEM spectra will locate the Coble peaks 

A, C, M, T and B that are important to CDOM characterization (Coble 2007). The locations of 

emission intensities are also used to calculate the humification index (HIX), the biological index 

(BIX) and the fluorescence index (FIX). FIX was calculated as the ratio of emission intensities at 

the wavelengths 450 nm and 500 nm with the excitation wavelength of 370 nm. BIX was 

calculated as the ratio of emission intensity at 380 nm divided by the emission intensity 

maximum between 420 nm and 435 nm at excitation wavelength of 310 nm. HIX was calculated 

using the area under the emission spectra between 435 to 480 nm divided by the peak area under 

the emission spectra between 300 and 345 nm and between 435 to 480 nm at excitation 

wavelength of 254 nm (McKnight et al. 2001).  

         These indices are a powerful tool to determine and understand the relative contribution 

from external and internal CDOM in the river (Zhou et al. 2015). FIX and aromaticity of the bulk 

DOM as well as the FIX and C/N ratio are inversely correlated. A BIX value of <0.6 will 

indicate that the bulk DOM has very little autochthonous organic matter. A BIX value between 

0.8 and 1.0 is associated with freshly produced DOM from biological origin. Freshly produced 

DOM will have a HIX value of less than 5. When HIX is greater than 5, the DOM will be 

considered degraded. HIX is positively correlated to aromaticity and negatively correlated to 

carbohydrate concentration (Birdwell et al. 2010). To decompose the 3D-EEM spectrums into 

different fluorescent components without any assumption of their spectral shape and number, 

parallel factor analysis (PARAFAC) was used. PARAFAC modeling was processed using 
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MATLAB software and the DOMFlour Toolbox (Stedmon and Bro 2008). Sample EEM’s were 

calibrated, corrected and normalized to maximum fluorescence intensity before analysis. A non-

negativity outlier test was performed. To validate model component number, a split-half analysis 

was used. The fluorescence intensities of each component were quantified during the PARAFAC 

modeling analysis (Maie et al. 2014). PARAFAC analysis of 3D-EEM spectra will reveal 

individual fluorescent DOM components including terrestrial humic-like materials, aquatic 

humic-like materials and protein-like materials (Zhou et al. 2015). 

2.3.6 Measurements of hydrographic and water quality parameters   

All water quality and hydrographic parameters were measured including pH, alkalinity, 

temperature and specific conductivity and suspended particulate matter. In order to trace water 

sources, measurements of major elements/metals were done using methods for environmental 

samples by simultaneous axially viewed ICP-AES following U.S. EPA guidelines. 

Measurements of major anions were done using the Dionex ICS-1000 Ion Chromatography 

System with Ion-Pac AS14A exchange column with Standard Methods for the Examination of 

Water and Waste Water Method 4110B. Hydrogen and oxygen isotopic composition, including 

δ18O and δD, was measured using a wavelength-scanned cavity ring-down spectroscopy, a water 

isotope analyzer (L1102-i) (Picarro Inc. Sunnyvale, Calif., USA). 

2.3.7 Statistical analysis 

            Sigma-plot software (version 12.5) was used to perform T-Test significance for all data 

reported in chapters I and II. Study area and sampling sites maps for this project were generated 

using ArcGIS at UWM GIS center. 
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2.4 Results and discussion 

2.4.1. Hydrographic and hydrological features of the lower Milwaukee River 

             Seasonal variations in hydrographic and water quality parameters are shown in Figure 2 

and Appendix A.  Data of total precipitation (cm) for the Milwaukee River basin from February 

2014 to April 2015 were obtained from NOAA web interface at station USW00014839 

(http://www.ncdc.noaa.gov/ghcnd) close to our sampling sites, while river discharge data were 

downloaded from USGS National Water Information System at USGS site #04087000 

(http://waterdata.usgs.gov/nwis). From February 2014 to April 2015, the average discharge was 

23.3± 34.6 m3/s, slightly higher than the averaged daily discharge during the past 100 years (13 

m3 /s) (USGS). River discharge peaked during the spring snowmelt (37.07 m3/s, April 2014) and 

remained approximately three factors lower during the rest of the sampling period. In April 2015 

there was a significant storm event due to heavy rainfall combined with snowmelt, creating a 

remarkably significant discharge peak of 144 m3/s (Figure 2). These hydrological changes will 

eventually lead to variations in the abundance, composition and fluxes of dissolved organic 

matter (DOM) in the Milwaukee River. The river water temperature varied from 0.1 °C during 

ice formation in winter to 25.6 °C in summer.  Generally, no ice cover was observed during the 

winter at the downstream sampling site (MR-01) near downtown Milwaukee, and its averaged 

water temperature (9.8±9.0 °C) was slightly higher than that at the upstream sampling site (MR-

05, 8.9±8.7 °C). The average pH in the Milwaukee River was 8.23±0.22, with the lowest value 

during high discharge events likely due to the dilution of low-pH rain and snow waters (pH~7). 

Similarly, specific conductivity in the Milwaukee River (average of 725±134 µS cm-1) showed 

the lowest value during the storm event in April 2015 (503 µS cm-1) mainly due to dilution, 

while the highest value was observed during April 2014 after the snowmelt (952 µS cm-1).  
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Figure 2. Seasonal variations in pH, specific conductivity (µS/cm), suspended particulate matter 

(mg/L), surface water temperature (°C) and water stable isotopes composition (δ18O and δ2 H) at 

an upper stream station (MR-05) and a down stream station (MR-01) in the lower Milwaukee 

River during 2014-2015. 

             Values of both pH and specific conductivity in the Milwaukee River were relatively 

higher than those of world rivers. This appears to be highlighting the influence of limestone 

weathering on water chemistry of the basin (sewrpec.org). In contrast to the variations of pH and 

conductivity, suspended particulate matter (SPM) concentrations ranged from the 1.6 mg/L 

during ice formation in winter to 140 mg/L during storm event in April 2015, with an average of 
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18±30 mg/L, showing a positive correlation with river discharge (R2=0.917 and p<0.001). 

Values of δ18O and δ2H in river waters were the lightest during snowmelt events for both 2014 

and 2015 with an average value of -8.97±1.37‰ for δ18O and -62.74±10.87‰ for δ2H, indicating 

the influence of groundwater and low snow accumulation. Additionally, river water isotopic 

composition under the ice was similar to the averaged composition of groundwater end-member 

samples (δ18O= -9.04‰ and δ2H= -59.83‰).  

2.4.2. Variations in DOC abundance in the lower Milwaukee River 
 
            Seasonal variations in DOC, CDOM and other derived optical parameters are shown in 

Figure 3 and Appendix B. Strong seasonality was observed in DOC abundance in both upstream 

(MR-05) and downstream (MR-01) stations. Concentrations of DOC at the downstream station 

varied greatly from 318 to 1102 µM-C with an average of 704±220 µM-C. DOC upstream was 

slightly higher than that of downstream and ranged from 355 to 1189 µM-C with average of 

745±248 µM-C. There was not a statistically significant difference in DOC abundance between 

MR-01 and MR-05 (p=0.633) (Appendix B). At both sampling sites, DOC concentration peaked 

during the spring snowmelt (Q max= 37 m3/s) and was higher than DOC concentrations during 

the April 2015 storm event (Q=144 m3/s), suggesting DOC sources from soil leaching and a 

dilution effect during storm events.  DOC abundance declined in warmer months in the summer 

and fall and was the lowest under ice cover during the winter of 2014. This is likely related to 

enhanced photo-degradation during summer and increased groundwater input during base-flow 

seasons (Helms et al. 2013). In contrast to the downstream sampling site, the river upstream was 

mostly ice covered during the winter season. From November 2014 to February 2015, the DOC 

concentrations downstream were lower than upstream, suggesting a slight DOM exclusion effect 

during ice formation (Guo et al. 2012) and a small extent of dilution from low DOC ground 
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water and ice-melt waters along the lower Milwaukee River from station MR05 to MR01. It is 

also likely that the ice cover prevented terrestrial input of DOM and low temperature minimized 

in situ primary production.  

 

Figure 3.  Seasonal and spatial variations of dissolved organic carbon (DOC, µM-C), absorption 

coefficient at 254 nm (a254, m-1), Specific UV absorbance at 254 nm (SUVA254, L mg-C-1 m-1) 

and Spectral slope between 275 and 295 nm (S275-295, nm-1) at an upstream (MR-05) and a 

downstream (MR-01) stations in the lower Milwaukee River during 2014-2015. 

2.4.3. Seasonal and spatial variations in CDOM characteristics 
 
            CDOM absorbance has been used as a proxy for bulk DOC in many studies (e.g. 

Weishaar et al., 2003; DeVilbis et al. 2016; Zhou et al. 2013). In Milwaukee River waters, 

seasonal and spatial variations of the absorption coefficient at 254 nm (a254) are consistent with 

seasonal and spatial variations of DOC. During 2014-2015, values of a254 at downstream station 

(MR-01) ranged from 24.7 to 120.8 m-1 with an average of 66.1±28.2 m-1 and from 37.2 to 145.7 

m-1 with an average of 75.9±33.2 upstream. There was not a statistically significant difference in 
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a254 between upstream and downstream stations (P = 0.507). There was, however, a significant 

correlation between a254 and DOC in both upstream (R2= 0.8799; p<0.0001) and downstream 

(R2= 0.7875; p<0.0001) indicating similar DOM sources and CDOM can indeed be used a proxy 

for the bulk DOC. Non-chromophoric DOC, which can be derived from the intercept DOC value 

at zero absorbance or  = 0 (DeVilbiss et al. 2016; Zhou et al. 2016), represented 38% of the bulk 

DOC downstream and 28% upstream confirming that DOM from upstream is more 

chromophoric than DOM downstream potentially due to degradation and anthropogenic input of 

DOM from the Milwaukee metropolitan area.  On average, non-chromophoric DOC in the 

Milwaukee River during our sampling time period was 234 µM-C, comprising about 32% of the 

bulk DOC (Fig. 3), which is slightly lower than that observed for Lake Michigan and other lower 

Great Lakes (Zhou et al., 2016), supporting my hypothesis that DOM in Milwaukee River waters 

is mostly chromophoric in nature (over 68%).   

 

Figure 4. Correlation between DOC and absorption coefficient in the lower Milwaukee River 

waters during 2014-2015. 
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              Specific UV absorbance at 254 nm (SUVA254) is an indicator of bulk DOM aromaticity  

(Burns et al., 2014; Zhou et al 2013). In lower Milwaukee River waters, SUVA254 showed strong 

seasonal variations that were controlled by water sources and discharge. Downstream SUVA254 

values varied from 2.4 to 4.4 L mg-C-1 m-1 with an average of 3.5±0.6 L mg-C-1 m-1 while 

upstream (site MR-05) values varied from 2.4 to 4.7 L mg-C-1 m-1 with an average of 3.6±0.7 L 

mg-C-1 m-1. There was not a statistically significant difference between SUVA254 for both 

sampling sites during 2014-2015 (P=0.550). DOM aromaticity was the lowest during the winter 

under the ice and during the summer months likely due to the limited terrestrial DOM input in 

winter months and photochemical and microbial degradations caused by an increase in biological 

activity, longer residence time, and low suspended particulate matter (~ 12 mg/L) during the 

summer season. SUVA254 was the highest during the spring melt event and relatively high during 

the April 2015 storm event as terrestrial DOM input peaked during these events, indicating 

riverine DOM during these sampling periods were mostly derived from fresh soil leachate. 

Similar to SUVA254, spectral slope between 275 and 295 nm (S275-295) is another DOM 

characterization tool used to determine spatial and temporal variations in DOM molecular 

weight. Spectral slope has been shown to be negatively correlated to DOM molecular weight (i.e. 

low S275-295 values correspond to higher DOM molecular weight, and vice versa) (Helms et al., 

2008). During 2014-2015 sampling seasons, S275-295 ranged from 0.0270 to 0.0140 nm-1 with an 

average of 0.0173±0.0032 nm-1 in the downstream sampling site (MR-01) and from 0.0120 to 

0.0270 nm-1 with an average of 0.0167±0.0035 nm-1 in the upstream sampling site (MR-05) 

suggesting a higher molecular weight DOM pool in the upstream waters, consistent with its 

fresher DOM source at the upper stream station. However, there was not a statistically significant 

difference in the spectral slope values between upstream and downstream in the lower 
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Milwaukee river waters (P=0.450). Consistent with low SUVA254, S275-295 peaked in the late 

summer and early fall indicating a lower molecular weight and less aromatic bulk DOM pool, 

potentially due to high in situ production of low molecular weight DOM and photo- 

biodegradation of allochthonous DOM in the river waters. 

2.4.4. Seasonal variations in FDOM characteristics and fluorescence indices 
 

           Examples of EEMs at different seasons in the lower Milwaukee River during 2014-2015 

are shown in Figure 5. Similar to many aquatic environments, the Milwaukee River EEM spectra 

included terrestrial humic-like peaks A and C and protein-like peak T.  A protein-like peak T 

typically existed in all river sample EEM spectra, however, the high abundance of the terrestrial 

humic-like peaks A and C during high discharge period masked the protein-like peak T (Coble 

2007). Excitation emission matrices (EEMs) showed similar trends for both the upstream and 

downstream sampling sites for all seasons (Figure 5).  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5. Examples of excitation-emission matrices (EEMs) at different seasons in the lower 

Milwaukee River during 2014-2015. 

     MR-01 March 2014 

  MR-01 January 2015    MR-01 October 2014 

       MR-01 July 2014 
a) b) 

c) d) 
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            Based on EEMs fluorescence intensities data, the highest abundance of FDOM was found 

in the summer with a maximum of ~ 250 ppb-QSE likely due to an increase in primary 

productivity and heavy rainfall in warmer months (note that maximum fluorescence intensity is 

different for each EEM in Figure 5).  Limited sources of FDOM (~90 ppb-QSE) were observed 

before the spring melt event. In winter months, groundwater was the dominant source for the 

Milwaukee River as a result of ice cover, which limited primary productivity.  

             FIX values provide information about the source of DOM such as microbial or terrestrial 

plant material as well as the degree of degradation of bulk DOM (Mcknight et al. 2001). FIX 

ranged from 1.13 to 1.28 with an average of 1.19±0.05 upstream and from 1.15 to 1.24 with an 

average of 1.19±0.03 downstream (p = 0.719). In both sites FIX values are less than 1.4 

indicating that the majority of the bulk DOM in the river was from terrestrial origin. BIX 

represents biological or autochthonous DOM with values between 0.8 and 1 indicating freshly 

produced DOM of biological or microbial origin and values below 0.6 is indicating minimal 

autochthonous DOM in the bulk DOM (Birdwell et al. 2010). BIX values in the river varied from 

0.55 to 0.71 with an average of 0.64±0.05 upstream and from 0.56 to 0.73 with an average 

0.65±0.05 downstream (p=0.708). This is an indication that there is little autochthonous DOM 

production in Milwaukee River. HIX is strongly correlated with aromaticity and increases with 

the degree of decomposition or fractionation of DOM by sorption with higher HIX values (HIX 

> 5) indicating degraded DOM (Birdwell et al 2010). Upstream HIX values ranged from 2.02 to 

8.83 with an average of 4.918±1.96 and from 1.86 to 7.6 with an average of 4.95±1.98 

downstream (P= 0.961), consistent with FIX and BIX indicating that DOM in the Milwaukee 

River water is aromatic and terrigeneous in nature. 
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2.4.5. Seasonal variations in fluorescent DOM components derived from PARAFAC 

analysis 

              Excitation-emission plots of fluorescent-DOM components and their characteristics are 

shown in Figure 6 and Table 1. Three DOM components (C1, C2 and C3) were identified via 

PARAFAC analysis. Component 1 (C1) was spectrally similar to peak M, which recently had 

been related to microbial-altered terrestrial DOM with low molecular weight. Component 1 (C1) 

is common in marine environments but can be found in wastewater, wetlands, and agricultural 

environments. Component 2 (C2) showed characteristics of terrestrial humic-like DOM with 

high molecular weight with the highest abundance in wetlands and forested environments. 

Component 3 (C3) is a protein-like component involving amino acids, free or bound in proteins, 

fluorescence resembles free tryptophan and may indicate intact proteins or less degraded peptide 

material (Gueguen et al 2011; Coble 2007; Yamashita et al 2008, Cory and McKnight 2005 and 

Stedmon and Markager 2005).  

 

Figure 6.  Excitation-emission plots of fluorescent-DOM components derived by PARAFAC 

analysis in the lower Milwaukee River during 2014-2015. 
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Table 1. Characteristics of the three components (C1, C2 and C3) identified using PARAFAC 

analysis in the lower Milwaukee River 2014-2015. 

 
Component Ex/Em (nm) Description 
 
C1 

 
240(310)/410 

 
Similar to peak M-marine humic-
like. Low molecular weight, 
common in marine environments 
associated with biological activity 
but can be found in wastewater, 
wetlands, and agricultural 
environments 

C2 
 
 
 
 
 
 
C3  
 
 
 
 
                                                 

265(370)/475 
     
 
 
 
 
 
275/330 

Similar to peak A-UVC humic-
like. High- molecular- weight 
humic, widespread, but highest in 
wetlands and forested 
environments 
 
Similar to peak T- UVB protein-
like. Amino acids, free or bound in 
proteins, fluorescence resembles 
free tryptophan, may indicate 
intact proteins or less degraded 
peptide material 
 

 

          A more detailed description of the PARAFAC derived DOM components is shown in 

Table 1. Components C1 and C2 were highly correlated to each other (R2= 0.945, p<0.001) and 

correlated to DOC (R2= 0.837, p<0.001 and R2= 0.827, p<0.001 respectively) confirming that 

both components originated from the same terrigeneous source. On the other hand, component 3 

(C3) was not correlated to C1, C2 or DOC (R2=0.1222, p>0.05, R2=0.110, p>0.05 and R2=0.057, 

p>0.05 respectively) further suggesting that C3 is mostly derived from an aquagenic source.  

             Seasonal variations of fluorescent-DOM components are shown in Figure 7 and 

Appendix C. In the downstream station (MR-01), C1 abundance sharply increased after the 

snowmelt event into the summer with the highest values in July, then declined toward the fall 
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with lowest values in winter under the ice cover, consistent with the variation trend of bulk DOC. 

 

Figure 7.  Seasonal variations of fluorescent-DOM components derived by PARAFAC analysis 

in an upstream (MR-05) and a downstream (MR-01) stations in the lower Milwaukee River 

during 2014-2015. 

               Component 1 abundance ranged from 4.5 to 21.5 ppb-QSE with an average of 12.0±4.5 

ppb-QSE and from 5.0 to 23.5 ppb-QSE with an average of 12.7± 5.6 ppb-QSE in the upstream 

station (MR-05) (p=0.469). Component 2 showed similar seasonal variations as C1 further 

confirming that both C1 and C2 are from the same terrigeneous sources. Component 2 ranged 

from 2.1 to 9.9 ppb-QSE with an average of 5.4± 2.3 ppb-QSE downstream and from 2.0 to 11.0 

ppb-QSE with an average of 5.8± 2.7 ppb-QSE upstream (P=0.469). Component 3 was lowest in 

the winter months when primary productivity was minimal. C3 abundance sharply increased in 

the spring and did not show much variability during summer and fall.  Downstream C3 

abundance varied from 1.1 to 5.7 ppb-QSE with an average of 3.4 ± 1.4 ppb-QSE and from 1.2 

to 6.4 ppb-QSE with an average 3.6±1.6 ppb-QSE upstream (P=0.469).  

2.4.6 DOM Spatial variations  in the lower Milwaukee River during high flow 

          (April 14, 2015) and low flow (November 13, 2014) seasons  

          Comparisons in DOM characteristics and spatial variations during low-flow and high-flow 

scenarios are shown in Figure 8 and Appendix D. During the low-flow season, instantaneous 
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discharge in the Milwaukee River was factors of 14 lower than that of high-flow during the 

storm event, 10 m3 s-1 and 144 m3 s-1 respectively. During low flow, DOC concentration ranged 

from 757 µM-C at MR-05 to 828 µM-C at MR-01 with an average of 776±29 µM-C. DOC 

concentration during high flow ranged from 749 (MR-01) to 798 (MR-03) µM-C with and 

average of 775±19 µM-C. Knowing that the downstream (MR-01) is much deeper than other 

upstream stations, DOC abundance was remarkably higher during low flow than during the 

storm event (high flow) in the downstream station (MR-01), potentially due to higher dilution 

effect of DOC during the storm event (Figure 8a) in the downstream than the upstream station. In 

contrast, DOC abundance during high flow in the upstream station, where the river is much 

shallower, was relatively higher than that of low flow, suggesting higher input of terrestrial 

DOM during the storm event.…………………………………………………..

 

 
 
Figure 8. DOM characteristics spatial variations along the lower Milwaukee River during low 

flow (November 13, 2014) and high flow (April 14, 2015) seasons. 
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             During low flow, absorption coefficient (a254) ranged from 74.8 m-1 (MR-01) to 80.6 m-1 

(MR-02) with an average of 78.2±2.9 m-1. During the storm event a254 varied from 79.7 m-1 (MR-

02) to 85.0 m-1 (MR-05) with an average of 81.48±2.06 m-1. In contrast to DOC, CDOM 

abundance is higher in the downstream station during high flow than low flow, suggesting 

excessive input of non-chromophoric degraded DOM through surface runoff from the urbanized 

Milwaukee metropolitan area during the storm event. During low flow, SUVA254 ranged from 

3.28 (MR-01) to 3.85 (MR-05) (L mg-C-1 m-1) with an average of 3.66±0.22(L mg-C-1 m-1). On 

the other hand, during high flow, SUVA254 ranged from 3.67 at station MR-02 to 4.02 at station 

MR-05 (L mg-C-1 m-1) with an average of 3.80 ±0.15 (L mg-C-1 m-1), indicating higher 

aromaticity of the bulk DOM during the storm event. During low-flow, S275-295 ranged from 

0.0147 (MR-02) to 0.0152 (MR-05) nm-1 with an average of 0.0149±0.0001nm-1. During  

the storm, (S275-295) ranged from 0.0140 (MR-01) to 0.0151 (MR-03) nm-1 with an average of 

0.0149±0.0001nm-1. As expected, S275-295 was inversely correlated to SUVA254 confirming that 

the bulk CDOM during the storm event at MR-01 was higher in molecular weight. Overall, 

spectral slope (S275-295) was lower during low flow at all sampling stations than high flow, 

indicating more degraded DOM during low flow season due to longer residence time that helps 

photochemical and biological degradations.  

2.4.7 Comparisons of DOC, CDOM and other optical parameters in the lower Milwaukee 

River to other rivers. 

In comparison, DOC average concentration in the Milwaukee River (725±232 µM-C) is 

relatively higher than other rivers, such as the Mississippi River (342±42 µM-C), Potomac River 

(275±50 µM-C) and Hudson River (442±83 µM-C), consistent with the fact that the Milwaukee 

River is less hydrologically altered although influences from agricultural activities in the 
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farmland existed and suggesting less processed DOM in the Milwaukee River watershed due to 

its short water residence time. In general, the Milwaukee River DOC abundance resembles that 

of Pike River (667±417 µM-C) and the Yukon River at Pilot Station (692±417 µM-C), which are 

mostly natural rivers with less hydrological alteration due to less dam construction.  Similar to 

Milwaukee River absorption coefficient (a254) is positively correlated with DOC in most rivers in 

Table 2. 

Table 2. Comparison of dissolved organic carbon (DOC), CDOM and other derived optical 

parameters (a254, SUVA254 and S275-295) in the lower Milwaukee River to other rivers.  

Spencer et al 2012 and a this study 

In general, SUVA254 in the Milwaukee River is relatively high in comparison with other 

rivers indicating higher aromaticity. SUVA254 in the Hudson River (3.48±0.22) resembles that of 

the Milwaukee River (3.52±0.59), indicating similar aromaticity of the bulk DOM suggesting 

similarities in watershed characteristics. SUVA254 in the Mississippi River (2.99±0.23) is lower 

than the Milwaukee River potentially due to a much larger watershed with different 

characteristics, including longer water residence time, photochemical degradation and 

anthropogenic influence (Duan et al. 2013 and Cai et al. 2015). Spectral Slope S275-295 in the 

 
                  River 

DOC  
(µM-OC) 

    a254  
   (m-1) 

SUVA254  
(L mg-C-1 m-1) 

S275-295  
(nm-1) 

 
Milwaukee (2014-2015) a 

 
725±232 

 
77±31 

 
3.52±0.59 

 
0.0170±0.0034 

Mississippi (2008-2010) 342±42 28 2.99±0.23 0.0151±0.0008 

Potomac (2008-2010) 275±50 21 2.31±0.33 0.0157±0.0017 

Colorado (2008-2010) 258±33 12 1.67±0.22 0.0217±0.0016 

Hudson (2005-2009) 442±83 42 3.48±0.22 0.0146±0.0007 

Yukon at Pilot Station (2001-2010) 692±417 62 3.08±0.47 0.0153±0.0019 

Oak creek (2002-2004) 558±158 46 2.86±0.52 0.0155±0.0012 

Pike (2002-2004) 667±417 73 3.71±0.55 0.0143±0.0016 

Passadumkeag (2004-2007) 1000±358 116 4.19±0.30 0.0134±0.0059 
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Milwaukee River (0.0170±0.0034) is higher than most rivers in Table 6 except the Colorado 

River (0.0217±0.0016) indicating a relatively lower molecular weight, likely containing more 

bioavailable bulk DOM in the Milwaukee River system than other rivers in the U.S. (Spencer et 

al. 2012). 

2.5 Conclusions  

This study showed strong seasonal and spatial variations in the abundance, composition and 

fluxes (discussed in Chapter II) of DOM in the lower Milwaukee River system. DOC 

concentration was relatively higher than that of other rivers and strongly influenced by 

hydrological conditions. There was not a significant correlation between DOC concentration and 

DOM composition. In contrast, there is a significant correlation among DOM optical parameters 

(i.e a254, SUVA254 and S275-295), which changes in river water due to biophysical controls (e.g. 

Battin et al. 2008), biogeochemical cycling (e.g Jaffe et al. 2008) and hydrological processes (e.g 

Huang and Chen 2009). DOM in the Milwaukee River during 2014-2015 was mostly 

chromophoric and terrigenous in nature. On average, non-chromophoric DOC comprised about 

33% of the bulk DOC, which is much higher than that observed for Lake Michigan and other 

lower Great Lakes (Zhou et al. 2016). In general, during the storm event and the spring thaw, 

large amounts of DOC were exported in a short period of time creating a noticeable pulse of 

DOM in the coastal area of Lake Michigan indicating DOM flux were primarily controlled by 

hydrology. Average instantaneous DOC flux during the April 2015 storm event were the highest 

during 2014-2015 (112982±1584 kg-C day-1) and represented almost 17% of the total DOC 

annual flux (6710 103 Kg-C year-1). Similar to many aquatic environments, the Milwaukee River 

EEM spectra included terrestrial humic-like peaks A and C and protein-like peak T. Three 

fluorescent DOM components were derived from PARAFAC modeling. Component C1 was 
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spectrally similar to peak M, which recently had been related to bio-altered terrestrial DOM with 

low molecular weight. Component C2 showed characteristics of terrestrial humic-like DOM with 

high molecular weight. Component C3 is a protein-like component and its fluorescence 

resembles free tryptophan. For future studies DOM components can be used as geochemical 

proxies to determine bioavailability (e.g. Balcarczyk et al. 2009), photo-reactivity (e.g Cory et al.  

2007) and soil DOM chelating strength (e.g Ohno et al. 2006) in the river .  Long term 

monitoring of DOM composition will help better predict how anthropogenic and climatic 

perturbations will affect coastal ecosystem in Lake Michigan and the metabolic pathways in the 

river, and will ultimately improve future watershed management decisions and help establish 

more successful ecosystem restoration plans (e. g Fellman et al. 2010). 

3. Chapter II: Seasonal variations in the abundance, chemical speciation and fluxes of 

nutrients (phosphorus and nitrogen) in the lower Milwaukee River. 

 3.1 Background 

             Phosphorus: Phosphorus (P) is the limiting nutrient in most aquatic environments, 

especially in oligotrophic lakes (e.g., Hecky and Kilham, 1988, Finlay et al. 2013 and Lin et al. 

2016). However, accelerated input of bioavailable phosphorus through anthropogenic activities 

may lead to degradation of water quality and catastrophic environmental issues in coastal waters 

(Yates and Johnes, 2013). Therefore, effective management of phosphorus is critical to the health 

of receiving waters (Bootsma et al. 2012). In recent years, bioavailable P has increased in the 

environment due to human activities (Howarth & Ramakrishna 2005 and Yates & Johnes 2013) 

and its abundance in many rivers has been increasing (Conley et al. 2009 and Seitzinger et al. 

2010). Similar to nitrogen, phosphorous enrichment may be caused by point sources, usually 
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associated with wastewater and industrial effluent, which are highly concentrated in the 

dissolved phase, and non-point sources such as surface and subsurface runoff commonly linked 

to agricultural activities and urban runoff, and are highly concentrated in the particulate phase 

(Withers et al. 2008). Furthermore, sources of phosphorous can be very diverse including 

atmospheric deposition, leaf fall, industrial debris, urban litter, automobiles, domestic waste 

water, pets and livestock waste, domestic and industrial fertilizers, detergents and lubricants, 

forestry, cultivated land and pasture, etc. (Bannerman et al. 1993, Némery and Garnier, 2016), 

Although phosphorus is not well quantified for each sources and their relative importance. 

During storm events, many combinations of these sources become mobilized providing a large 

degree of both spatial and temporal variability. Unlike nitrogen and silicon, phosphorus has a 

high affinity to colloids and particles in natural waters (e.g., Santschi, 1992; Lin et al. 2015).  

     In aquatic systems, P can occur in many different forms including inorganic, organic, 

dissolved and particulate phases (Lin and Guo, 2016), with measurable fractions of dissolved 

inorganic phosphorus (DIP) or orthophosphates, dissolved organic phosphorous (DOP), 

particulate inorganic phosphorous (PIP) and particulate organic phosphorous (POP). Total 

dissolved phosphorous (TDP) is considered to be the sum of DIP and DOP and total particulate 

phosphorous (TPP) is the sum of PIP and POP (Meybeck 1982). Different forms of P should 

have different bioavailability and environmental fates during their biogeochemical cycling in 

aquatic ecosystems. For example, organisms prefer the uptake of DIP to support primary 

production, but they may also use DOP when the abundance of DIP is limited. Therefore not all 

forms of P have the same biogeochemical reactivity. Bioavailable phosphorous may show 

seasonal variability even under conditions where total P loading does not change.   

     Changes in stoichiometry of the bioavailable P species over time could be detrimental to 
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the water quality in the Milwaukee River and coastal areas of Lake Michigan. However, many 

previous studies and government agencies only measure concentrations of total P without 

information of chemical speciation of P in natural waters (e.g. Finlay et al. 2013 and Zou et al. 

2011). Detailed studies on P speciation in the Milwaukee River are still lacking. Recently, there 

has been renewed interest in P dynamics and excessive Cladophora algae growth in the near-

shore area of Lake Michigan (e.g. Bootsma et al. 2008 and Tomlinson et al. 2010). Therefore 

knowledge of abundance, chemical and phase speciation and fluxes of the various forms of P 

will provide a baseline data set to help evaluate and manage such issues. 

             Nitrogen: Nitrogen (N) is the other essential nutrient for living organisms and plays a 

critical role in the biogeochemical cycling pathways in aquatic ecosystems (Lee et al. 2014). 

Fossil fuel combustion (atmospheric deposition), fertilizer application and cultivation of N-fixing 

crops will significantly increase the fluxes of the various forms of reactive nitrogen to lakes via 

waterways (Han et al. 2008). It is estimated that anthropogenic impacts approximately doubled 

the input of reactive nitrogen to the earth’s surface mainly through the application of nitrogenous 

fertilizers (e.g. Schlesinger 2009). Elevated fluxes of nitrogen species are associated with 

enhanced coastal eutrophication and anoxia (e.g. Diaz and Rosenberg, 2008 and Kane et al. 

2014), alteration of nutrient stoichiometry that in some cases favors toxic phytoplankton, and 

increases in the production of nitrogenous greenhouse gases (Green et al. 2004). 

          Globally and locally, public health agencies have long recognized that regions of excessive 

fertilizer use will often have high concentrations of reactive nitrate (NO3
-) in surface and 

groundwater that leads to the degradation of drinking water quality and occasionally to the fatal 

condition in infants known as methemoglobinemia (Avery et al. 1999). Nitrogen exists in natural 

waters in many chemical forms including dissolved organic nitrogen (DON), dissolved inorganic 
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nitrogen (DIN), which includes ammonium (NH+
4), nitrite (NO2

-), and nitrate (NO3
-), and 

particulate nitrogen (PN). The bioavailable nitrogen species in aquatic ecosystems are NH+
4, 

NO2
-, NO3

-, and DON. Nitrate is usually the most abundant among all species in oxic 

environments and therefore, the most frequently analyzed and correlated to anthropogenic 

influence (mainly fertilizers). DON is measured with NH+
4 as Kjeldahl nitrogen. However, in 

natural waters the ammonia is usually low in concentration and Kjeldahl nitrogen reported is 

mainly DON. Nitrite is as well very low in oxic river waters (Meybeck 1982). 

          Unfortunately, a search of recent literature finds no studies that examined the seasonal 

variation of nitrogen and phosphorous species and their fluxes in the Milwaukee River. The goal 

in this thesis research is to examine in depth the variability of chemical and phase speciation of 

nutrients and their fluxes in the lower Milwaukee River to help guide future water policy related 

to nutrient discharge from the Milwaukee River to Lake Michigan.   

3.2 Hypotheses and Objectives  

              My hypotheses are 1) the abundance of nitrogen and phosphorous species will express a 

strong seasonality in the lower Milwaukee River, 2) Nutrient speciation is predominately 

controlled by the hydrological cycle and most of anthropogenic nitrogen and phosphorous levels 

will spike during storm events and snowmelt and high rainfall, and 3) nutrient fluxes from the 

lower Milwaukee River to Lake Michigan will be predominately in the dissolved inorganic phase 

(DIP and NO3
- ).  

              The objectives of this study were to 1) collect monthly and storm event samples at the 

lower Milwaukee River along an anthropogenically impacted gradient, 2) determine the 

abundance of various N and P species in the lower Milwaukee River, 3) examine the influence of 
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hydrology (discharge) and anthropogenic activities (runoff) on the composition of nutrient 

species in the Milwaukee River, and 4) quantitatively estimate the seasonal and annual river 

export fluxes of nutrient species to Lake Michigan. 

3.3 Methods  

3.3.1 Measurement of phosphorous species 

Acid persulfate method with modification was used to determine the concentrations of TDP in all 

samples collected. In brief, the filtrate samples were digested in acid persulfate solution at 95 °C 

for 24 h. The standard phosphomolybdenum blue method was used to complex the dissolved 

phosphorous species. Spectroscopic analysis was conducted at 882 nm using a UV-Vis 

spectrophotometer (Agilent 8453) and 5 cm quartz cuvette to increase the sensitivity. For DIP, 

digestion is not needed and measurements using the same method were directly performed. 

Concentrations of DOP were calculated by subtracting TDP from DIP. In the case of TPP, filter 

samples were wetted with 0.5 M MgCl2 and heated in an oven at 95 °C until dry, then ashed in 

the furnace at 550 °C for 2 hours to decompose all organic phosphorous. Concentrations of PIP 

were determined by direct extraction from filter samples in 1 M HCl solution at room 

temperature for 24 h, followed by neutralization and dilution, both TPP and PIP extractions were 

analyzed using the standard phosphomolybdenum blue method. Concentrations of POP were 

obtained by subtracting TPP from PIP (Lin et al. 2016).  

3.3.2 Measurement of nitrogen species 

Nitrate measurements were done using the Dionex ICS-1000 Ion Chromatography System with 

IonPac AS14A exchange column with Standard Methods for the Examination of Water and 

Waste Water Method 4110B. In brief, water samples were injected into a stream of eluent 
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(bicarbonate buffer). The anions of interest were separated on the basis of their relative affinities 

for a low-capacity, strongly basic anion exchanger. The separated anions were converted to their 

acid forms and measured by conductivity. They were identified on the basis of retention time and 

quantified by measurement of peak area or peak height that was compared to standards known 

solutions (Nemi.gov). Measurements of total dissolved nitrogen (TDN) were performed using 

high temperature combustion on a Shimadzu TOC analyzer (TOC-V) interfaced with a nitrogen 

detector. Subtracting NO3- from TDN was used to estimate the abundance of DON. 

3.4 Results and discussion  

 
3.4.1 Abundance of dissolved and particulate phosphorus species 
                           
              Concentrations of phosphorus species in Milwaukee River waters between February 

2014 and April 2015 are shown in Appendix E and their seasonal variations are depicted in 

Figure 9.  In the lower Milwaukee River, the DIP concentration was slightly higher than that of 

the anthropogenically influenced Fox River (Lin et al., 2016). DIP exhibited large seasonal 

variability ranging from 0.114 µM-P in January 2015 under the ice cover to as high as 2.751 µM-

P during April 2015 storm event, with an average of 0.970±0.791 µM-P.  The average DIP 

concentration in the downstream sampling site (1.072±0.862 µM-P) was found to be higher than 

upstream sampling site (0.867 ±0.720 µM-P), suggesting DIP input through urban runoff from 

the Milwaukee metropolitan area. There is not a statistically significant difference in DIP 

concentrations between the two sites (P=0.619). DOP varied from 0.080 to 2.791 µM-P with an 

average of 0.897±0.765 µM-P at the downstream station and from 0.085 to 4.687 µM-P with an 

average 1.336±1.214 µM-P at the upstream station, respectively.  There is not a statistically 

significant difference (P=0.281) in DOP concentrations between the upstream and downstream 

stations although the average DOP concentration was higher at the upstream station.  PIP varied 
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from 0.0445 to 2.229 µM-P with an average of 0.473±0.483 µM-P and POP varied from 0.224 to 

3.791 µM-P with an average of 0.809±0.648 µM-P.  PIP and POP were strongly correlated to 

discharge (r2=0.2705, p<0.001 for the downstream and r2= 0.7396, p<0.001 for the upstream 

station), discharge and suspended particulate matter (SPM) were strongly correlated (r2=0.917, 

p<0.001) indicating that high concentrations of POP and PIP observed during the storm event are 

due to soil erosion and large fraction of PP is originated from terrestrial input and sediment 

resuspension. 

 

Figure 9.  Seasonal variations in abundance of phosphorus species at an upstream (MR-05) and a 

downstream (MR-01) station in the lower Milwaukee River during 2014-2015. 

 
3.4.2 Seasonal variations of dissolved and particulate Phosphorus species 
  
             DIP concentration was lowest in winter season as a result of many factors including co-

precipitation of P with Fe oxides and hydroxides, microbial utilization, and dominance of 

groundwater sources under the ice (Guo et al. 2012). In contrast to nitrate, during the summer 
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season average DIP concentration peaked  (1.137±0.531 µM-P) potentially due to the nonpoint 

source input from agricultural activities (mainly fertilizers) during the heavy rainfall season and 

intense DOM photo-degradation. In terms of seasonal variability, DOP was low during the storm 

event (0.660± 0.016 µM-P) potentially due to the dilution effect. Higher abundance of DOP was 

observed during summer with an average concentration of 2.021±1.584 µM-P, suggesting a 

conversion of DIP to DOP via primary production during warmer months.  

            PIP seasonal trend mimicked that of SPM and discharge (Figure 9). PIP was highest 

during the storm event followed by spring snowmelt and low during the base flow season. It was 

clear that PIP seasonal variation was mainly controlled by hydrology.  POP remained relatively 

unchanged most of the time during this study. POP did not show much of a peak during 

snowmelt period, potentially due to dilution effect and was the highest during the April 2015 

storm event due the intense soil erosion. 

3.4.3 Abundance of major nitrogen species  
 
            Seasonal variations of nitrogen species are shown in Figure 10 and Appendix F. 

Upstream NO3
- concentrations ranged from 70 to 259 µM-N with an average of 131±64 µM-N. 

The downstrem NO3
- concentration was lower and ranged from 62 to 238 µM-N with an average 

of 119±55 µM-N suggesting dilution of NO3
- from upstream to downstream. There is not a 

statistically significant difference between the two sampling sites (p=0.229). In Milwaukee River 

waters, NO3
- was predominately the major specie in the dissolved nitrogen pool. In comparison 

with other anthropogenically influenced world rivers, the Milwaukee River NO3
- concentration is 

slightly higher than the Mississippi River, Amazon River and Changjiang (Yangtze) River (see 

also references in Guo et al. 2004). DON concentration was significantly lower than NO3
-. 

Upstream DON concentration varied from 2 to 254 µM-N with an average of 55±59 µM-N and 
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from 11 to 143 µM-N with an average of 54±59 µM-N. There is not a statistically significant 

difference between the two sampling sites (P=0.619).  

 

Figure 10.  Seasonal variations of nitrogen species at the upstream (MR-05) and downstream 

(MR-01) station in the lower Milwaukee River during 2014-2015. 

3.4.4 Seasonal variation of major nitrogen species 

                   In the Milwaukee River, NO3
- concentration steeply declined during snowmelt and 

storm events due to rapid dilution.  NO3
- was relatively low and showed minor seasonal variation 

most the year and was almost factor of four higher under the ice cover in the winter months 

(Figure 10), this could have resulted from a combination of many factors including intense NO3
- 

fixation by vegetation during the warm season in the spring and summer, slow biological activity 

in the winter due to freezing temperatures and NO3
- contaminated groundwater sources during 

the base flow period under the ice cover in winter. 

                 Similar to DOC seasonal changes, DON concentration in Milwaukee River waters was 

the highest during the snowmelt event in the spring, where input of terrestrial DOM is high. 

Lower abundance of DON was observed during a storm event due to dilution effect.  DON 

remained relatively unchanged during late spring and summer and early fall during 2014-2015. 

3.4.5 Speciation and average phases partitioning of N and P among dissolved, particulate, 

organic and inorganic phases 
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Within the TDP pool, DIP% varied from 20% to 93% with an average of 53%± 25 downstream 

and varied from 7% to 95% with an average of 40%± 25 upstream (Figure 11). Within the TDP 

pool, DOP% upstream varied from 5.1% to 93% with an average of 60%±25 and from 6.9% to 

79% with an average of 47%±25 downstream. Within the particulate pool TPP, PIP% varied 

from 8% to 56% with an average of 32%±15 and POP% varied from 43% to 92% with an 

average of 67%± 18 (Appendix E). 

 
 

Figure 11. Average phase partitioning of N and P among dissolved, particulate, organic and 

inorganic forms in the lower Milwaukee River during 2014-2015. (Nitrate; DON, dissolved 

organic nitrogen; DIP dissolved inorganic phosphorus; DOP, dissolved organic phosphorus; PIP, 

particulate inorganic phosphorus; POP, particulate organic phosphorus). 

                Within the total phosphorus pool, average percentage of TDP represented 63% at the 

downstream station and 60% at the upstream station. Therefore, phosphorus exported from the 

Milwaukee River to Lake Michigan was predominately in the dissolved form. Average 

percentage in the downstream DIP (34%) was higher than DIP upstream (24%) and upstream 

DOP (36%) was higher than downstream DOP (29%), suggesting the addition of anthropogenic 

phosphorus, mostly DIP, from urban runoffs.  Concentrations of TPP are relatively lower than 

TDP; this is unique to the Milwaukee River. For example, the Mississippi River, Chena River 



www.manaraa.com

	
  
36 

and Jiulong River all have higher TPP than TDP (Prastka & Malcolm 1994 and Guo et al. 2004). 

However, the opposite is true for the Milwaukee River. Within the TPP pool, PIP% and POP% 

were similar in both sampling sites. There was no significant difference in the phase partitioning 

of dissolved nitrogen between the upstream and the downstream. 

             Within the total dissolved nitrogen pool, NO3% varied from 52% to 94% with an average 

of 68%±16 downstream and varied from 43% to 94% with an average of 73%±16 upstream. 

DON% upstream varied from 6% to 51% with an average of 32%±16 and from 6% to 57% with 

an average of 27%±16 downstream. On average, NO3
- represented ~70% of the TDN in 

Milwaukee River waters leaving ~30% in the form of DON. In contrast to phosphorus chemical 

speciation, there was no difference in nitrogen species percentages between the upstream and the 

downstream stations in the lower Milwaukee River. High nitrate percentages in the Milwaukee 

River indicate an anthropogenic influence on the drainage basin, including fertilizer applications 

and urban effluent (e.g. Lee et al. 2014). 

3.4.6 Seasonal and spatial variations in the partitioning of N and P species 

             Seasonal and spatial variations in partitioning of nitrogen and phosphorus in the lower 

Milwaukee River upstream and downstream stations are shown in Figure 12 and Appendix E. 

The percent NO3
- in the total dissolved N pool shows a seasonal variability at both sampling 

locations. Even though the lower Milwaukee River had similar NO3- concentrations trends 

between the upstream and the downstream during most of the sampling periods, it differed in 

seasonal NO3-% trends. For example, NO3-% made up the majority of the TDN pool; it was very 

high in winter and early spring (~90%) and lowest during the warmer months (~60%) due to 

dilution effect and slow vegetation uptake and possibly input of groundwater, which contained 

low nitrate contamination. In general, DON percentage was highest during the snowmelt event 
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(~50%) — when the soil leaching of organic materials is the most intense (Guo et al. 2004). In 

the case of phosphorus, the TDP% expressed higher variability than TPP% between upstream 

and downstream. In general, DIP% was higher downstream than upstream, indicating changes in 

source terms for DIP, and DOP% was higher upstream than downstream through out the seasons 

showing a consistent trend as that of concentrations. Together, changes in DIP and DOP between 

upstream and downstream stations clearly indicate changes in natural DOP and anthropogenic 

DIP sources along the Milwaukee River and the influence of DIP from the anthropogenic 

sources.  Overall, the predominant nitrogen and phosphorus species transported from the 

Milwaukee River to Lake Michigan are DIN (DIN/TDN%=70%), DIP (DIP/TP%=29%) and 

DOP (DOP/TP%=33%).  

 

 

 

 

 

 

 

 

 

 

Figure 12. Seasonal and spatial variations of N and P partitioning between dissolved, particulate, 

organic and inorganic phases at the upstream (MR-05) and downstream (MR-01) stations in the 

lower Milwaukee River from February 2014 to May 2015. DIN denotes nitrate; DON for 
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dissolved organic nitrogen; DIP for dissolved inorganic phosphorus; DOP for dissolved organic 

phosphorus; PIP for particulate inorganic phosphorus; and POP for particulate organic 

phosphorus. 

3.4.7 Nutrient composition in the lower Milwaukee River waters 

 River waters molar ratio of DOC/DON averaged 19±11 downstream and 46±87 upstream. 

DOC/DOP averaged 1696±1844 downstream and 1126±1121 upstream.  The average DOC/DOP 

ratio is considerably higher than the Redfield ratio for phytoplankton.  However, similar high 

DOC/DOP ratios have been observed for the Great Lake regions (Lin and Guo, 2016) where P 

has been a limiting nutrient. DON/DOP molar ratio averaged of 121±126 downstream and 

76±100 upstream. In addition DIC/NO3
- molar ratio averaged 50±24 Downstream and 47±23 

upstream. DIC/DIP averaged 14405±19775 downstream and   13012±13024 upstream.  NO3
-

/DIP averaged 365±543 downstream and 321± 444 upstream       (Appendix F). 

 

 

 

 

 

 

 

 

 

Figure 13. Seasonal variations in nutrient composition at the upstream (MR-05) and downstream 

(MR-01) stations in the lower Milwaukee River during 2014-2015. 
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            Ratio of DOC/DON was the lowest during winter where most of the DOM is from 

autochthonous source with fresh DOM and low C/N ratio and high ammonia concentration in the 

river waters under the ice, likely derived from microbial production and transformation under the 

ice (Guo et al. 2004). High DOC/DON was observed during summer, snowmelt and storm event 

potentially due to the dominance of terrestrial DOM and highly degraded soil DOM with low 

C/N ratio in the bulk DOM. On the other hand, DON/DOP molar ratio was lowest during the 

summer where DOP concentration was high. DON/DOP was highest during the spring melt 

period where DON was the highest and DOP was low due to dilution. This is similar to 

subtropical and temperate rivers such as the Loire River, ~64 (Meybeck et al. 1988) and the 

Morlaix River, ~ 97 (Wafar et al. 1989). This indicated similar characteristics of terrestrial DOM 

in the Milwaukee River watershed (Guo et al. 2004). Nevertheless, the DOC/DOP ratio did not 

show a clear seasonal variation and remained relatively unchanged during 2014-2015. Consistent 

with DOC/DON, DIC/ NO3
- was lowest under the ice and higher during the warmer months 

since NO3
- was lowest during the warmer months due to high biological activities and vegetation 

uptake.  

The DIN/DIP molar ratio in the Milwaukee River waters was highest in winter under the 

ice and lowest it the summer were primary production is the most intense. This DIN/DIP ratio is 

almost 10 times higher than the Redfield ratio (N/P=16) and much higher than those of other 

world rivers (Cai et al. 2008). DIC/DIP was highest in winter under the ice and low in the 

warmer months, suggesting that DIC/DIP was controlled by hydrology and biological processes. 

All molar ratios are suggesting that Milwaukee River was an N enriched and P limited 

ecosystem. 
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3.4.8 Comparisons in P speciation between the lower Milwaukee River and other rivers  

              The average DIP concentration in the Milwaukee River during 2014 and 2015  

(0.97± 0.79 µM) was much higher than those of pristine rivers such as the Chena River in Alaska 

(0.030-0.300 µM; Cai et al., 2008) and the Jourdon River in Mississippi (0.030 µM-P) (Lin et al., 

2012). The average DIP concentration was similar to that of the Fox River (0.828 ±0.216 µM-P), 

which is heavily polluted as a result of agricultural activities (DeVilbiss et al. 2016). However, 

DIP in the Milwaukee river waters is less abundant compared to those of polluted rivers, such as 

the Mississippi River (2.890 ±1.146 µM-P) and the Jiulong River (2.140 µM-P). In contrast, 

average DOP concentration in the Milwaukee River (1.12±0.99 µM-P) is twice as high as that of 

the Fox River (0.599 ±0.109 µM-P) and the Jiulong River (0.550 µM-P), indicating the 

importance of soil DOM and other natural sources in the Milwaukee River.  In addition, higher 

DOP abundance in the Milwaukee River could be related to excess abundance of DIP, especially 

during summer season where primary production is intense. In contrast to many other river 

waters, average PIP concentration in the Milwaukee River (0.50±0.52 µM-P) was relatively low 

in comparison to that of the Fox River (0.963 ±0.128 µM-P), Mississippi River (3.450 µM-P) 

and Jiulong River (3.95 µM-P).  Similarly, POP concentration (0.81±0.60 µM-P) was slightly 

lower that of the Fox River (1.020 ± 0.417 µM-P), Jiulong River (1.16 µM-P), Jourdon River 

(0.9 µM-P) and Mississippi River (1.81 µM-P), likely due to the overall low suspended particles 

and low abundance of P in suspended particles (in terms of µg-P/g-particle). In general, 

phosphorus exported from the Milwaukee River to Lake Michigan was predominantly in the 

dissolved phase (DIP and DOP).  

               Furthermore, within the total P pool, DIP/TP% in the Milwaukee River (29±27 %) is 

higher than that of most rivers, as shown in Table 4, except that of the Mississippi River (34%). 
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Uniquely, DOP/TP% in the Milwaukee River (33±34%) is higher than all rivers in Table 4. In 

contrast, PIP/TP% (14±18%) is lower than that of most rivers except for the Jourdon River (6%). 

POP/TP% in the Milwaukee River (24±21%) resembles that of most rivers except the Jourdon 

River (77%). In general, low abundance of TPP in the Milwaukee River waters could affect the 

extent of P release in to the dissolved phase (Zang and Hung 2007), which is important, knowing 

that the Milwaukee River is phosphorus limiting aquatic system (Lin et al. 2015). 

Table 3. Comparison in dissolved and particulate phosphorous species in the lower Milwaukee 

River to other rivers. 

       River TDP (µM) %TDP TPP (µM) %TPP Ref. 

DIP (µM) DOP 
(µM) 

%DIP %DOP PIP  
(µM) 

POP  
(µM) 

%PIP %POP  

Milwaukee 0.97± 
0.79 

1.12± 
0.99 

29± 
27 

33± 
34 

0.50± 
0.52 

0.81± 
0.60 

14± 
18 

24± 
21 

This 
study 

Fox 0.828 ± 
0.216 

0.599 ± 
0.109 

24 ± 
1 

18 0.963 ± 
0.128 

1.020 ± 
0.417 

29 ± 
6 

29 ± 
5 

a 

Mississippi 2.890 ± 
1.146 

0.345 ± 
0.148 

34 4 3.450 1.81 41 21 b,c,d 

Jourdon 0.030 0.160 3 14 0.070 0.9 6 77 e 

Chena  0,030- 
0.300 

0.060 ± 
0.063 

19 ± 
9 

7 ± 
4 

0.600 ± 
0.300 

74 ± 10 f 

Jiulong   2.140 0.550 27 7     3.95 1.16 51 15 g 
a. Lin et al. 2016, b. Cai and Guo 2009, c. Shim et al. 2012, d. Duan et al. 2010, e. Lin et al. 2012, f. Cai et al. 

2008 and g. Lin et al. 2013             

3.4.9 Comparisons in N species between the Milwaukee River and other rivers  

            As shown in Table 4, the average NO3
- concentration in the Milwaukee River (125 ±61 

µM-N) is remarkably higher than that of the lower Mississippi River (103 µM-N), lower 

Missouri River (88 µM-N), lower Potomac River (11 µM-N) and Amazon River (10 µM-N) 

suggesting significant influence through agricultural activities, mainly due to intensive 

application of fertilizers in the Milwaukee River Basin. NO3
- abundance in the Milwaukee River 

is lower than that of the exceptionally heavily polluted Illinois River (292 µM-N) (Table 4). 
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Similar to DOP and DOC, the average concentration of DON in the Milwaukee River (54 ±50 

µM-N) is considerably higher than that of other major rivers (Table 9). The NO3/TDN% in the 

Milwaukee River (70±55%) resembles that of the lower Mississippi River (74%) and lower 

Missouri River (71%) and much higher than the Lower Potomac (38%) and the Amazon (42%) 

Rivers, showing a significant human impact on the lower Milwaukee River. In contrast, the 

DON/TDN % in the Milwaukee River (30±45%) was generally lower that that of the lower 

Potomac River (62%) and Amazon River (58%) and higher than that of lower Illinois River 

(10%), lower Mississippi River (26%), lower Missouri River (29%), again supporting influence 

of human activities on nutrient speciation in the lower Milwaukee River. 

Table 4. Comparison of major nitrogen species (NO3
- and DON) in the lower Milwaukee River 

to other rivers.  

  TDN TDN%   

  NO3
- (µM) DON (µM) % NO3

- %DON  

Lower Milwaukee River  125 ±61 54 ±50 70±55 30±45 This study 

Lower Illinois River  292 32 90 10 a 

Lower Mississippi River  103 37 74 26 a 

Lower Missouri River  88 36 71 29 a 

Lower Potomac River 11 18 38 62 b 

Amazon River 10 14 42 58 c 
a. Goolsby and Battaglin 2001, b. Morgan and Kline 2011 c. Meybeck 1982 

3.4.10 Fluxes of dissolved organic carbon and nutrient species  

            Terrestrial export of nutrients species and organic carbon is a critical factor to the 

biogeochemistry of receiving coastal aquatic systems (Klump et al. 1997). The magnitude  

of the quantities exported affect aquatic productivity, food web structure and water quality 

(Vanni et al. 2001). In this study, a strong seasonal variation in concentrations of nutrient species 

(P and N) and dissolved organic carbon (DOC) was observed. To be able to assess the impacts of 
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nutrients species and DOC on water quality and ecosystem health in the coastal area of Lake 

Michigan, it is particularly important to determine contemporary Milwaukee River fluxes. 

Estimating river fluxes is challenging and fluxes can be accurately characterized only through 

very intensive sampling (Holmes et al. 2010). In most cases, river export fluxes were estimated 

from the average concentration measured during warmer months and annual average freshwater 

discharge. This method assumes similar species abundances during different seasons and 

assumes permanent linear relationship between daily species fluxes and instantaneous river 

discharge. Such an approach is associated with many uncertainties. For example, fluxes 

estimation without snowmelt and storm events sampling will lead to underestimation for organic 

species and over estimation for inorganic species (Guo et al. 2012). Note that these uncertainties 

in river fluxes have to be quantified before the export fluxes can be useful to assess freshwater 

quality status. In this study, annual fluxes of DOC, DON, NO3
-, DOP, DIP, PIP and POP were 

estimated using the interpolation method of regression between instantaneous species flux and 

discharge (Warnken and Santschi et al. 2004). In addition, using the method of regression 

between instantaneous species fluxes and discharge, fluxes can also be calculated by multiplying 

the slope of the regression curve to the mean instantaneous discharge. It will be important to 

compare the two methods uncertainties and biases in order to have an accurate estimation of 

fluxes. Using the interpolation method of regression, the annual export fluxes of DIP, DOP, PIP, 

POP, NO3
-, DON and DOC are 63, 14, 47, 64, 1325, 200 and 6710 103 Kg-(P,N or C) year-1 

respectively and the export fluxes of DIP, DOP, PIP, POP, NO3
-, DON and DOC were 63, 14, 

47, 64, 1325, 200 and 6710 103 Kg-(P,N or C) year-1 respectively.  When normalized to drainage 

basin area, the yields were 28, 6, 21, 28, 581, 88 and 2943 kg-(P,N or C)  km-2 year-1 for DIP, 

DOP, PIP, POP, NO3
-, DON and DOC, respectively.  
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Table 5. Nutrient fluxes (103 kg-P, N or C year-1) and yields (kg km-2 year-1) in the lower 

Milwaukee River during 2014-2015.   

Species DIP DOP PIP POP NO3
- DON DOC 

Fluxes (103 kg-P, N or C year-1) 63 14 47 64 1325 200 6710 
Yields (kg km-2 year-1) 28 6 21 28 581 88 2943 

                        

            DIP and POP fluxes and yields were the highest among P species in the Milwaukee River 

waters. In comparison with other world rivers, DIP and DOC yields in Milwaukee River during 

2014-2015 were slightly higher that that of other world rivers but NO3
- yield in the river during 

2014-2015 were remarkably higher that of other world rivers. This reflects the anthropogenic 

impact and the influence of agricultural activities in the river watershed on the lower Milwaukee 

River and may lead to degradation of freshwater quality and ecosystem health in the river and 

coastal area of Lake Michigan. 

                  The maximum average instantaneous daily fluxes for all species occurred during the 

April 2015 storm event. DIP average instantaneous fluxes were similar during spring (55±33 Kg 

day-1) and summer (58±49 Kg day-1) and five times higher than that of winter and fall.  During 

the April 2015 storm event, DIP flux was 20 times higher that of the spring and summer 

including the snowmelt and rain seasons.  In general, DOP instantaneous flux was higher than 

that of DIP except for the April 2015 storm event. Average PIP instantaneous flux was in general 

lower than that of DIP and DOP except, it was 3 times higher that DOP during the storm. POP 

averages instantaneous fluxes resembled that of DIP fluxes during 2014-2015. Besides the storm 

event that was six times higher, NO3
- average daily flux were the highest during the snowmelt in 

the spring. The average NO3
- daily flux was higher in winter under the ice than fall and summer. 

Similar to DOC, the flux of DON was high during spring and the storm event. DOC flux during 
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the storm event was six times higher that of the spring snow melt season, 19727±9062 and 

112982±1584 kg-C day-1 respectively. In general, during the storm event and the spring thaw, 

large amounts of DOC and nutrients were exported in a short period of time creating an 

important pulse of DOM in the coastal area of Lake Michigan indicating DOM fluxes from the 

Milwaukee River to Lake Michigan are primarily controlled by hydrology. Therefore, at 

different times of the year water sources change from predominately groundwater to rain water 

and snow melt producing strong seasonality in discharge influencing DOM abundance, 

composition, and fluxes in the lower Milwaukee River and near-shore Lake Michigan. 

Table 6. Seasonal variations in average instantaneous daily fluxes (Kg day-1) of DOC and 

nutrients species in lower Milwaukee River during 2014-2015. 

Species DIP DOP PIP POP NO3
- DON DOC 

Spring  55±33 69±37 50±21 65±18 3499±1344 160±97 19727±9062 

Summer  58±49 102±112 26±30 38±22 1543±761 66±12 18439±10754 

Fall   11±9 20±17 3±1 13±3 842±159 63±31 6946±1235 

Winter  11±12 17±11 3±3 9±6 1843±263 93±42 5438±1188 

Storm  1044±23 255±6 765±133 1044±591 22808±634 199±3 112982±1584 

3.4.11 Comparison of TDN, TDP and DOC yields in the lower Milwaukee River to other 

rivers (Part I and II) 

            The Milwaukee River strands out as having almost 10 times higher nutrient yields (flux 

normalized to drainage area) of TDN than that of the largest artic rivers such as the Yukon River, 

Lena River, Yenisey River and Ob’ River.  In the case of TDP, the yield ranged from 5 to 17 

times higher that that of the artic rivers. On the other hand, DOC yield in the Milwaukee River 

(2943 Kg km-2 year-1) was slightly higher than that of the Lena River (2338 Kg km-2 year-1) and 
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about two times higher than those of other artic rivers (Table 7). To date, it is obvious that the 

Milwaukee River is heavily polluted due to many factors including anthropogenic influence from 

the urbanized metropolitan area of the city of Milwaukee and agricultural activities considering 

that over 50% of the Milwaukee River watershed is farmlands. Long term monitoring and 

observations of DOM and nutrient species dynamics in the Milwaukee River and the coastal area 

of Lake Michigan is needed to better understand the controlling factors and the potential trend 

changes due to climate and environmental changes that may affect water quality and ecosystem 

health.   

Table 7. Comparison of TDN, TDP and DOC yields (Kg km-2 year-1) in the lower Milwaukee 

River with other rivers. 

River Milwaukee Ob' Yenisey Lena Kolyma Yukon Mackenzie 

TDN 718 63 67 69 48 81 36 

TDP 34 6 4 2 2 2 2 

DOC 2943 1396 1904 2338 1555 1771 820 

Milwaukee River data (This Study) and other rivers data (Holmes et al 2010) 

3.4.12 Comparison of NO3
- and DIP in the lower Milwaukee River to other rivers 

              The average NO3
- concentration in the lower Milwaukee River (125±61 µM-N) is 

similar to that of the Mississippi River (114 µM-N) and it is surprisingly the highest among all 

world river waters. The average DIP concentration in the lower Milwaukee River (0.97±0.79 

µM-P) resembled that of that of Changjiang River (0.83 µM-P) and it is lower than that of the 

Mississippi River (2.890±1.146 µM-P), Ob’s (2.3 µM-P) and Trinity River (1.85 µM-P). NO3
- 

yield in the lower Milwaukee River (581 Kg km -2 year-1) is higher than that of the Mississippi 

River (294 Kg km-2 year-1), showing the tremendous addition of anthropogenic nitrate to the 

Milwaukee River watershed mainly through agricultural activities that may have negative affects 



www.manaraa.com

	
  
47 

on the ecosystem health in the Milwaukee River and its estuary in coastal Lake Michigan. The 

second highest NO3
- yield among all world rivers in Table 12 was the heavily polluted 

Changjiang River (392 Kg km -2 year-1). On the other hand, even though the average 

concentration of DIP in the Milwaukee River was similar to that of the Changjiang River, the 

yields were much different, 27.9 Kg km -2 year-1 and 8.1 Kg km -2 year-1 respectively. The DIP 

yield in the Milwaukee River is relatively similar to that of Trinity River (27.3 Kg km -2 year-1) 

and the Amazon River (21.4 Kg km-2 year-1). The highest DIP yield among all rivers (Table 8) is 

the Mississippi River that is almost twice as high as that of the Milwaukee River (43.4 Kg km-2 

year-1). Even though the Milwaukee River and Lake Michigan are P- limited ecosystems, very 

high levels NO3
- could severely deteriorate the water quality and ecosystem health, especially in 

the coastal waters.  

Table 8.  Comparison of NO3
- and DIP concentrations and yields in the lower Milwaukee River 

to other rivers. 

 

River 
Concentration (µM) Yield (Kg/km2/yr) 

References 
NO3

- DIP NO3 DIP 
Milwaukee  125±61 0.97±0.79 581 27.9 This study 
Mississippi 114 2.890±1.146 294 43.4 a,b,c 
Mackenzie 2.42 0.1 6 0.5 d,e 
Changjiang  70.3 0.83 392 8.1 f 
Trinity 39.2 1.85 266 27.3 g 
Amazon 10 0.7 137 21.4 h 
Yukon 2.43 ± 0.63 0.053±0.04 8 0.4 i 
Ob’ 56 2.3 106 9.6 j 
Yenisey 26 0.4 87 2.9 j 
a. Cai and Guo 2009, b. Rabalais et al 1996, c. Berner and Berner 1996, d. Enviromental canada 1978, e. 
Millot et al 2003, f. Liu et al 2003, g. Warnken 2002, h. Demaster and Pope 1996, i. Guo et al.2004, j. 
Gordeev 2002 
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3.5 Conclusions  
 
 Variations in abundance, chemical speciation, and export fluxes of nutrients (N and P) 

from the Milwaukee River and the influence of hydrology and anthropogenic activities on 

nutrient dynamics in river waters were examined during 2014-2015. Nutrient species of nitrogen 

and phosphorous expressed a strong seasonality in the lower Milwaukee River. DIP 

concentrations increased during late spring and summer (during heavy rain season), suggesting 

excess DIP input through agricultural activities and city effluent in the Milwaukee River 

watershed (including fertilizers). DIP was the highest during the April 2015 storm event. 

Therefore, P nutrient speciation is predominately controlled by the hydrological cycle. Within 

the total dissolved phosphorus pool, almost 50% were organic phosphorus (DOP) and the other 

50% were inorganic (DIP). DOP was relatively low during the snow melt and storm event 

potentially due to dilution effect. The highest abundance of DOP was observed during summer, 

suggesting a conversion of DIP to DOP via primary production. Phosphorus exported from the 

Milwaukee River to Lake Michigan was predominately in the dissolved form (62% of total P). 

POP and PIP abundances in the Milwaukee River where uniquely lower that of the world rivers 

such as the Fox River, Mississippi River and Jiulong River. In general, particulate P showed 

strong correlation with discharge and was predominately controlled by hydrology. NO3
- was the 

predominant dissolved N specie, while DON contributed up to 30% of the TDN transported in 

the river. NO3
- abundance was relatively low during the warmer season in spring and summer 

and peaked under the ice in winter, suggesting that NO3
- was mostly controlled by biological 

uptake by vegetation in the watershed and hydrology. In contrast to DIP, the level of NO3
- was 

relatively low during the storm mostly due to dilution. In general, the average NO3
- concentration 

during 2014-2015 was among the highest in comparison with major world rivers, reflecting the 
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polluted NO3
- conditions of the Milwaukee River watershed potentially through agricultural 

activities. DON abundance on the other hand was much lower than that of DIP and showed 

similar seasonal variations to DOC. The average N/P in inorganic and organic nutrient pools in 

the river were 151±84 and 80±67 respectively, indicating a N- enriched but P-depleted 

ecosystem in the lower Milwaukee River.  Except for NO3
-, the average instantaneous flux was 

the lowest during winter and high during the spring and the storm event. Therefore, most of 

anthropogenic nitrogen (NO3
- ) and phosphorous (DIP) fluxes spiked during storm and snowmelt 

events.  The DIP yield in the Milwaukee River (28 Kg km-2 year-1) is relatively similar to that of 

the Trinity River (27 Kg km-2 year-1) and the Amazon River (21 Kg km-2 year-1) but much higher 

than that of the heavily polluted Changjiang River (8.1 Kg km-2 year-1). Surprisingly, NO3
- yield 

in the lower Milwaukee River (581 Kg km-2 year-1) was higher than that of the Mississippi River 

(294 Kg km-2 year-1), showing the tremendous addition of anthropogenic nitrate to the 

Milwaukee River watershed. Controlling factors of nutrients species in the Milwaukee River will 

keep evolving, as a result of population growth and climate change. Long term monitoring of 

nutrient dynamics in the Milwaukee River is essential to be able to prevent water quality and 

ecosystem health perturbations in the river and the coastal area of Lake Michigan. 
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5. Appendices 

Appendix A.  Surface water temperature (Temp), specific conductivity (Sp. cond), pH, 

suspended particulate matter (SPM) and water stable isotopes composition (δ18O and δ2 H) at an 

upstream (MR-05) and a downstream (MR-01) stations in the lower Milwaukee River during 

2014-2015. 

Sampling 
Dates 

Temp 
C° 

Sp. Cond 
µS cm-1 

pH TA 
(µM kg-1) 

SPM 
(mg L-1) 

d(O-18/O-16) 
(‰) 

d(D/H) 
(‰) 

 
MR-01 (Downstream) 

 
2/27/14 0.3 678 8.2 4768 4.6 -8.02 -56.6 
3/27/14 1.3 924 7.9 4243 16.0 -11.22 -80.7 
4/24/14 11.3 952 8.3 4908 22.6 -9.65 -67.0 
5/22/14 13.2 764 7.9 4488 ---- -7.78 -52.4 
6/11/14 19.6 825 8.1 4864 14.6 -7.25 -50.6 
7/10/14 23.4 723 8.3 5300 12.0 -7.49 -52.0 
8/10/14 25.6 848 8.4 4932 11.3 -7.91 -57.0 
9/11/14 19.9 785 8.5 5360 10.0 -7.53 -53.5 
10/9/14 14.4 839 8.3 4956 4.7 -9.10 -66.8 
11/13/14 8.9 954 8.5 5876 7.0 -8.85 -63.6 
12/9/14 1.1 608 8.5 6547 1.3 -9.34 -65.9 
1/9/15 0.2 705 8.3 7217 3.3 -9.86 -67.0 
2/10/15 0.4 604 8.2 6354 6.0 -9.49 -68.7 
3/12/15 2.3 712 8.1 4384 11.0 -11.91 -84.2 
4/10/15 6.3 503 8.1 1450 140.0 -7.07 -42.4 

 
MR-05 (Upstream) 

2/27/14 0.2 605 8.3 6662 1.6 -9.21 -62.9 
3/27/14 1.1 836 8.1 5135 8.4 -10.28 -72.5 
4/24/14 10.4 754 8.3 4956 14.3 -9.63 -67.0 
5/22/14 12.5 784 8.2 4904 21.1 -7.94 -53.6 
6/11/14 16.7 629 8.3 4657 35.4 -8.35 -58.1 
7/10/14 23.6 722 8.4 5717 11.4 -7.65 -52.7 
8/10/14 26 844 8.5 6039 15.9 -8.26 -58.5 
9/11/14 17.7 854 7.8 5713 11.0 -8.00 -56.5 
10/9/14 10.9 821 8.5 6020 3.3 -9.60 -67.7 
11/13/14 2.2 754 7.6 2373 12.0 -10.04 -73.9 
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Continued appendix A 
Sampling 
Dates 

Temp 
C° 

Sp. Cond 
µS cm-1 

pH TA 
(µM kg-1) 

SPM 
(mg L-1) 

d(O-18/O-16) 
(‰) 

d(D/H) 
(‰) 

 
MR-05 (Upstream) 

 
12/9/14 3.9 517 8.4 5411 2.0 -9.19 -65.4 
1/9/15 0.1 610 8.3 6032 5.0 -9.78 -67.5 
2/10/15 0.2 555 8.2 6583 10.0 -9.56 -67.5 
3/12/15 2.1 528 8.2 4056 9.0 -12.34 -87.6 
4/10/15 6.2 505 8.2 2785 100.0 -7.02 -42.5 
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Appendix B.  Dissolved organic carbon (DOC) and optical properties including   

absorption coefficient at 254 nm (a254), specific UV absorbance at 254 nm (SUVA254)  and 

spectral slope at 275-295 nm (S275-295) at an upstream (MR-05) and a downstream (MR-01) 

stations in the lower Milwaukee River during 2014-2015. 

Sampling 
Dates 

DOC 
(µM-C) a254 (m-1) SUVA254 

(L mg-C-1 m-1) 
S275-295 

(nm-1) 

                                                  
                                                 MR-01 (Downstream) 
 
2/27/14 318 24.7 2.81 0.0170 

3/27/14 328 40.2 4.44 0.0140 

4/24/14 726 42.2 3.04 0.0178 

5/22/14 1007 113.1 4.07 0.0154 

6/11/14 928 100.5 3.92 0.0159 

7/10/14 1102 120.8 3.97 0.0159 

8/10/14 602 57.8 3.48 0.0180 

9/11/14 794 52.8 2.41 0.0268 

10/9/14 594 62.9 3.83 0.0171 

11/13/14 825 74.8 3.28 0.0150 

12/9/14 696 64.1 3.33 0.0168 

1/9/15 749 74.2 3.58 0.0199 

2/10/15 613 39.1 2.74 0.0199 

3/12/15 531 44.1 3.00 0.0157 

4/10/15 749 80.6 3.89 0.0140 
 
                                                  MR-05 (Upstream) 
 
 

2/27/14 379 37.2 3.54 0.0163 

3/27/14 355 39.5 4.02 0.0143 

4/24/14 696 63.2 3.29 0.0173 

5/22/14 1128 145.7 4.67 0.0145 
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Continued appendix B   

Sampling Dates DOC 
(µM-C) a254 (m-1) SUVA254 

(L mg-C-1 m-1) 
S275-295 

(nm-1) 

 
MR-05 (Upstream) 

 
 
 
7/10/14 

 
 

1189 

 
 

129.6 

 
 

3.94 

 
 

0.0158 

8/10/14 760 73.5 3.50 0.0179 

9/11/14 926 74.4 2.91 0.0267 

10/9/14 781 94 4.35 0.0157 

11/13/14 727 67.8 3.37 0.0124 

12/9/14 549 52.8 3.48 0.0171 

1/9/15 699 67.8 3.51 0.0202 

2/10/15 516 40.2 2.37 0.0198 

3/12/15 655 50.4 2.78 0.0145 

4/10/15 764 85 4.02 0.0147 
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Appendix C. Fluorescent Component abundance (C1, C2 and C3) and fluorescent indices FIX 

(fluorescence index), BIX (biological index) and HIX (humification index) in the lower 

Milwaukee River during 2014- 2015. 

Sampling 
Dates 

 FIX   BIX  HIX  C1   C2  C3 

                                                                                     (ppb-QSE) 
                                                   

                                                        MR-01 (Downstream) 
   

2/27/14 1.24 0.70 7.03 4.47 2.07 1.09 
3/27/14 1.22 0.73 2.18 6.77 2.76 4.32 
4/24/14 1.17 0.68 3.22 12.15 5.30 5.58 
5/22/14 1.16 0.58 7.24 16.87 8.73 2.68 
6/11/14 1.15 0.62 4.76 17.17 7.54 4.12 
7/10/14 1.15 0.56 7.60 21.50 9.93 2.44 
8/10/14 1.19 0.64 3.46 10.94 4.16 3.17 
9/11/14 1.16 0.64 4.47 14.89 5.67 3.69 
10/9/14 1.18 0.65 3.85 10.41 4.31 3.62 
11/13/14 1.21 0.66 4.79 12.48 5.40 3.75 
12/9/14 1.21 0.64 7.40 11.01 4.92 1.79 
1/9/15 1.22 0.64 6.04 12.51 5.64 2.39 
2/10/15 1.24 0.69 7.10 6.84 2.92 1.61 
3/12/15 1.22 0.68 1.89 8.41 3.61 5.35 
4/10/15 1.17 0.59 3.27 13.66 7.51 5.68 
            

MR-05 (Upstream) 
 
2/27/14 

 
1.24 

 
0.69 

 
8.83 

 
6.10 

 
3.11 

 
1.18 

3/27/14 1.23 0.70 2.80 6.83 3.01 3.02 
4/24/14 1.19 0.62 3.10 12.02 5.67 5.40 
5/22/14 1.14 0.58 5.01 16.70 8.62 3.72 
6/11/14 1.13 0.59 4.98 21.43 9.74 4.41 
7/10/14 1.16 0.55 5.68 23.51 10.97 2.87 
8/10/14 1.17 0.64 3.91 14.05 5.62 4.03 
9/11/14 1.17 0.61 2.02 17.55 7.08 6.40 
10/9/14 1.17 0.63 4.36 13.91 6.52 3.49 
11/13/14 1.19 0.63 6.49 14.47 6.33 4.08 
12/9/14 1.21 0.67 6.95 9.75 4.17 2.10 
1/9/15 1.28 0.71 5.73 5.03 2.02 1.19 
2/10/15 1.28 0.71 7.46 6.75 2.98 1.76 
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Continued appendix C     
Sampling 
Dates 

 FIX   BIX  HIX  C1   C2  C3 

 (ppb-QSE)  
 

MR-05 (Upstream) 
 
3/12/15 1.24 0.67 2.55 8.57 3.81 5.04 
4/10/15 1.17 0.60 3.90 13.86 7.58 5.29 
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 Appendix D.   Optical properties of CDOM during high flow (April 10 2014) and low  

 flow (November 13 2014) in the lower Milwaukee River. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID DOC 
(µM-C) 

a254  
(m-1) 

SUVA254 
(L mg-C-1 m-1) 

S275-295 
(nm-1) 

FIX BIX HIX 

 
Low Flow (November 13 2014) 

 
 

MR-01 825 74.8 3.28 0.0151 1.20 0.66 6.92 
MR-02 777 80.6 3.77 0.0147 1.19 0.68 6.21 
MR-03 765 77.0 3.65 0.0150 1.24 0.64 6.29 
MR-04 757 80.2 3.83 0.0149 1.19 0.67 6.76 
MR-05 757 78.5 3.75 0.0152 1.19 0.63 6.49 

        
High Flow (April 10 2014) 

MR-01 749 80.6 3.89 0.0140 1.17 0.59 3.27 
MR-02 786 79.7 3.67 0.0146 1.18 0.59 3.36 
MR-03 798 81.3 3.69 0.0151 1.17 0.60 2.94 
MR-04 780 80.8 3.75 0.0143 1.17 0.58 3.58 
MR-05 764 85.0 4.02 0.0147 1.17 0.60 3.90 
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Appendix E.  Concentrations of dissolved inorganic P (DIP), dissolved organic P (POP), 

particulate inorganic P (PIP), and Particulate organic P (POP), Ratios of DIP to TDP (total 

dissolved P), DOP to TDP, PIP to TPP (total particulate P) and POP to TPP at an upstream (MR-

05) and a downstream stations in the lower Milwaukee River during 2014- 2015. 

Sampling DIP DOP DIP/TDP DOP/TDP PIP POP PIP/TPP POP/TPP 
Dates (µM) (µM) (%) (%) (µM) (µM) (%) (%) 

MR-01 (Downstream) 

         
2/27/14 1.06 0.2 84 16 0.691 0.653 51 49 
3/27/14 1.649 1.28 56 44 0.613 1.18 34 66 
4/24/14 0.576 0.208 73 27 0.641 0.66 49 51 
5/22/14 0.515 1.942 21 79 0.696 0.727 49 51 
6/11/14 1.149 0.298 79 21 0.665 0.765 47 53 
7/10/14 2.271 2.791 45 55 0.17 0.443 28 72 
8/10/14 1.032 1.197 46 54 0.164 0.971 14 86 
9/11/14 0.681 1.386 33 67 0.239 0.625 28 72 
10/9/14 1.094 0.081 93 7 0.107 0.754 12 88 
11/13/14 0.394 0.691 36 64 0.046 0.528 8 92 
12/9/14 0.14 0.346 29 71 0.071 0.381 16 84 
1/9/15 0.114 0.424 21 79 0.099 0.224 31 69 
2/10/15 0.16 0.524 23 77 0.045 0.413 10 90 
3/12/15 2.496 1.446 63 37 0.605 0.796 43 57 
4/10/15 2.751 0.649 81 19 1.741 1.624 52 48 
Average 1.072 0.898 52 48 0.44 0.716 31 69 
STDEV ±0.862 ±0.766 ±25 ±25 ±0.45 ±0.347 ±16 ±16 

MR-05 (Upstream) 

2/27/14 1.592 0.086 95 5 0.441 0.403 52 48 
3/27/14 1.37 0.668 67 33 0.518 1.121 32 68 
4/24/14 0.318 0.525 38 62 0.872 0.918 49 51 
5/22/14 0.417 1.906 18 82 0.694 0.811 46 54 
6/11/14 0.46 0.943 33 67 1.391 1.078 56 44 
7/10/14 1.203 4.688 20 80 0.284 1.025 22 78 
8/10/14 0.711 2.209 24 76 0.236 0.681 26 74 
9/11/14 0.199 2.782 7 93 0.23 0.633 27 73 
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Continued appendix E 

 
Sampling 
Dates 
 

DIP 
(µM) 

DOP 
(µM) 

DIP/TDP 
(%) 

DOP/TDP 
(%) 

PIP 
(µM) 

POP 
(µM) 

PIP/TPP 
(%) 

POP/TPP 
(%) 

 
MR-05 (Upstream) 

 
10/9/14 0.283 0.29 49 51 0.057 0.549 9 91 
11/13/14 0.118 0.475 20 80 0.096 0.394 20 80 
12/9/14 0.9 0.94 49 51 0.384 0.832 32 68 
1/9/15 0.124 0.543 19 81 0.077 0.3 20 80 
2/10/15 1.575 1.933 45 55 0.132 0.314 30 70 
3/12/15 1.078 1.388 44 56 0.705 0.695 50 50 
4/10/15 2.668 0.673 80 20 2.23 3.792 37 63 
Average 0.868 1.337 40 59 0.556 0.903 34 66 
STDEV ±0.721 ±1.215 ±25 ±25 ±0.588 ±0.843 ±14 ±14 
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Appendix F.  Concentrations of Nitrate (NO3
-), dissolved organic N (DON), ratios of NO3

- to 

TDN (Total dissolved nitrogen) and DON to TDN at an upstream (MR-05) and a downstream 

(MR-01) stations in the lower Milwaukee River during 2014-2015. 

 

Sampling 
Dates 

     NO3
-  DON     

(µM) 
NO3

- /TDN DON/TDN 
    (µM)       (%)        (%) 

MR-01 (Downstream) 

2/27/14 179 11 94 6 
3/27/14 155 143 52 48 
4/24/14 80 79 50 50 
5/22/14 78 64 55 45 
6/11/14 65 46 58 42 
7/10/14 74 37 67 33 
8/10/14 62 36 63 37 
9/11/14 76 50 60 40 
10/9/14 71 29 71 29 
11/13/14 75 78 49 51 
12/9/14 151 57 72 28 
1/9/15 180 118 60 40 
2/10/15 238 16 94 6 
3/12/15 178 20 90 10 
4/10/15 128 19 87 13 
Average 119 54 68 32 
STDEV ±57 ±38 ±16 ±16 

MR-05 (Upstream) 

2/27/14 259 16 94 6 
3/27/14 192 252 43 57 
4/24/14 79 9 89 11 
5/22/14 79 82 49 51 
6/11/14 70 34 67 33 
7/10/14 84 33 72 28 
8/10/14 80 35 69 31 
9/11/14 86 59 60 40 
10/9/14 86 40 68 32 
11/13/14 
12/9/14 

84 
117 

2 
54 

98 
69 

2 
31 
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Continued Appendix F 

Sampling 
Dates 

NO3
-       

(µM) 
DON     
(µM) 

NO3
- /TDN 

(%) 
DON/TDN 

(%) 

 
 
 
 

MR-05 (Upstream) 
 
 
 

1/9/15 224 72 76 24 
2/10/15 239 94 72 28 
3/12/15 156 19 89 11 
4/10/15 133 22 86 14 
Average 131 54 73 27 
STDEV ±66 ±60 ±16 ±16 
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Appendix G.   Seasonal variation in nutrients molar ratios at an upstream (MR-05) and a 

downstream (MR-01) stations in the lower Milwaukee River during 2014-2015. 

 
Sampling Dates DOC/DON  DIC/DIN DOC/DOP  DIC/DIP DIN/DIP  DON/DOP 

 
MR-01 (Downstream) 

2/27/14 30 30 1589 5042 169 53 
3/27/14 2 20 256 1851 94 112 
4/24/14 9 63 3484 8807 139 381 
5/22/14 16 65 518 9755 151 33 
6/11/14 20 78 3111 4433 56 155 
7/10/14 30 76 395 2467 32 13 
8/10/14 17 81 503 4861 60 30 
9/11/14 16 41 573 4541 112 36 
10/9/14 20 72 7341 4667 65 363 
11/13/14 11 76 1194 14529 191 113 
12/9/14 12 45 2011 48317 1076 166 
1/9/15 6 41 1768 64269 1582 278 
2/10/15 37 27 1168 40182 1491 31 
3/12/15 26 25 367 1794 71 14 
4/10/15 39 12 1154 566 47 29 
Average 19 50 1696 14405 356 121 
STDEV ±11 ±24 ±1844 ±19775 ±543 ±126 
       

MR-05 (Upstream) 

 
2/27/14 23 24 4412 3912 162 189 
3/27/14 1 23 532 3189 140 378 
4/24/14 74 67 1326 16548 248 18 
5/22/14 14 60 592 11339 189 43 
6/11/14 31 70 1122 10557 152 36 
7/10/14 37 72 254 5062 70 7 
8/10/14 22 75 344 8469 113 16 
9/11/14 16 73 333 31670 435 21 
10/9/14 20 73 2692 22140 305 138 
11/13/14 353 25 1530 18194 714 4 
12/9/14 10 47 584 6180 131 57 

133 1/9/15 10 27 1288 48803 1805 
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Continued appendix G     
2/10/15 6 28 267 4306 152 48 
3/12/15 35 26 472 3763 145 14 
Sampling Dates DOC/DON  DIC/DIN DOC/DOP  DIC/DIP DIN/DIP  DON/DOP 

 
MR-05 (Upstream) 

 
4/10/15 34 21 1136 1050 50 33 

Average 46 47 1126 13012 321 76 
STDEV ±87 ±23 ±1121 ±13024 ±444 ±100 
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